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Abstract

In this survey, we review the literature investigating participatory budgeting as a social

choice problem. Participatory Budgeting (PB) is a democratic tool aiming at making

budgeting decisions in a more democratic manner. Specifically, citizens are asked to

vote onwho to allocate a given amount ofmoney to a set of projects that can potentially

be funded. From a social choice perspective, it corresponds then to the problem of

aggregating opinions about which projects should be funded, into a budget allocation

satisfying a budget constraint. �is problem has received substantial a�ention in recent

years and the literature is growing at a fast pace. In this survey, we present the most

important research directions from the literature, each time presenting a large set of

representative results. We only focus on the indivisible case, that is, PB problems in

which projects can either be fully funded or not at all.

�e aim of the survey is to present a comprehensive overview of the state of the

research on PB. We aim at providing both a general overview of the main research

questions that are being investigated, and formal and unified definitions of the most

important technical concepts from the literature.

Of course a survey is never complete as the state of the research keeps changing.

�is document is intended to be a living document that gets updated every now and

then as the literature grows. If you feel that some papers are not presented correctly,

or simply missing, feel free to contact us. We will be more than happy to correct it.

http://arxiv.org/abs/2303.00621v4
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Chapter 1

Introduction

Participatory budgeting (PB) is a recent democratic innovation that aims to involve citizens in

budgeting decisions. It is one of the most successful democratic innovations in recent years

(Wampler, McNulty and Touchton, 2021). Since its first implementation in Porto Alegre, Brazil,

in 1989, it spread around the world and is now implemented in every continent and in most coun-

tries (Dias, 2018; Dias, Enrı́quez and Júlio, 2019). Given its success, a wide variety of processes

have been implemented. Most of these processes however follow the same key steps (Wampler,

2000; Cabannes, 2004; Shah, 2007):

◮ Regular meetings are held by the municipality to discuss potential projects that could be

funded using the available budget. Typically, these projects are proposed by the citizens.

◮ A shortlist of potential projects is decided upon, usually, by collecting all proposals that

are feasible and fit the requirements of the PB process. Additionally, the cost of each pos-

sible project is determined, either by experts from the municipality or by the citizens that

proposed the project.

◮ Citizens vote on the shortlisted projects to determine which of them will be funded, given

the budget constraint.

◮ �e municipality reports back to the citizens on the advancement of the actual realisation

of the selected projects.

Note that the steps above have been phrased as if the organising entity was a municipality, the

typical case. However, the scale of the process can vary significantly, from a neighbourhood of

a city—as, for instance, in Amsterdam (City of Amsterdam, 2022)—to subnational entities—for

example regional departments in Peru (Shah, 2007). �ere also are examples of PB processes

implemented in schools1, or housing communities2.

It is also interesting to note that not all the processes include a voting stage. Indeed, some-

times the PB process is just organised as a deliberative mechanism throughout where the set of

projects to implement is determined meeting a�er meeting. �is was typically the case for the

first PB process implemented in Brazil (Cabannes, 2004).

As should be clear from the typical structure outlined above, several steps of a PB process

involve the citizens’ participation: first when submi�ing proposals, and second when voting on

the shortlisted projects. �is perspective on PB makes it a typical social choice problem and

a burgeoning literature on PB has emerged from the (computational) social choice community,

1See for instance participatorybudgeting.org/pb-at-ps139 for an example of PB processes within primary schools.
2See the example of social housing in Scotland for instance: sharedfuturecic.org.uk/participatory-budgeting-

within-social-housing-ideas-for-be�er-engaging-with-tenants-and-residents-groups.
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focusing predominantly on the voting stage. �e aim of this survey is to present themain findings

coming from this line of research. It complements the first survey of Aziz and Shah (2021) which

was wri�en before the sharp increase of publications on the topic and only covers the literature

until 2019.

In contrast to the survey of Aziz and Shah (2021), we only focus on indivisible participa-

tory budgeting, also called discrete PB (Aziz and Shah, 2021), that is, the special case of PB

where projects can either be fully funded or not all (projects cannot be fractionally implemented).

Within this framework, we present what we believe to be the most important concepts and re-

sults. We aim to provide a comprehensive set of definitions and to unify concepts and notations

that appeared in different publications.

Wewill first present the basicmodel and our notations (Chapter 2). �enwe turn to the differ-

ent ballot formats that have been proposed for PB (Chapter 3). Once the design of the ballots will

be clarified, we will discuss rules for aggregating said ballots (Chapter 4). We will then present

how to asses the quality of these rules in terms of fairness (Chapter 5) and other axiomatic prop-

erties (Chapter 6). A�er that, we will look at the algorithmic aspects of PB (Chapter 7). Having

discussed the standard model for PB, we will then present variations and extensions of the stan-

dard model that have been introduced (Chapter 8). We will finally provide interesting pointers to

go beyond what we presented in the survey, be it related frameworks or actual implementation

of PB in practice (Chapter 9). We will conclude this survey by mentioning what we consider to

be the most important directions for future work (Chapter 10).
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Chapter 2

Preliminaries

Almost the entire computational social choice literature focuses on the voting stage of PB. �e

only exception we are aware of is the work of Rey, Endriss and de Haan (2021). �e voting stage

will also be the main focus of this survey. In the following we introduce the standard model of

the voting stage of PB processes. We then try to clarify different related concepts: preferences,

utilities, satisfaction and ballots.

2.1 �e Standard Model of PB

�e voting stage of a PB process is represented as a tuple of three elements I = 〈P, c, b〉 called
an instance where P = {p1, . . . , pm} is the set of projects; c : P → R>0 is the cost function,

associating every project p ∈ P with its cost c(p) ∈ R>0; and b ∈ R>0 is the budget limit. For

any subset of projects P ⊆ P , we denote by c(P ) its total cost
∑

p∈P c(p). Note here that we

make the common assumption1 that both the costs and the budget limit have to be positive. An

instance I = 〈P, c, b〉 is said to have unit costs if for every project p ∈ P , we have c(p) = 1 and
b ∈ N>0. �ese instances are especially interesting because they correspond to multi-winner

elections (Lackner and Skowron, 2023).

Let N = {1, . . . , n} be the set of voters involved in the PB process, these are the citizens

participating in the process, not the officials/organisers. When facing an instance I = 〈P, c, b〉,
they are asked to submit their preferences over the projects in P . �ey do so by submi�ing a

ballot whose format is determined by the rules of the process. Several ballot formats have been

considered for PB as we shall see later. For now, let us denote by Ai the ballot that voter i ∈ N
is submi�ing. �e vector A = (A1, . . . , An) of the ballots of the voters is called a profile. Note

that we use the terms voters and agents interchangeably, purely for stylistic reasons.2

�e outcome of the voting stage I = 〈P, c, b〉 is a budget allocation π ⊆ P such that c(π) ≤ b.
We will denote by Feas(I) the set of all feasible budget allocations for instance I , defined as

Feas(I) = {π ⊆ P | c(π) ≤ b}.
Budget allocations are determined using PB rules. A PB rule R is a function taking as input an

instance I and a profileA and returning a set of feasible budget allocations R(I,A) ⊆ Feas(I).
PB rules that always return a single budget allocation are called resolute. For simplicity, we will

denote the output {π} of a resolute PB rule by just π. PB rules that are not resolute are called

irresolute, they thus potentially return several tied budget allocations. Unless explicitly stated, we

will assume rules to be resolute. At a few occasions we will discuss randomised PB rules, which

1Motamed, Soeteman, Rey and Endriss (2022) is the only paper considering negative costs, which only is relevant

since they also consider multi-dimensional costs.
2�e reader may get bored to always read the same terminology all the time.
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are rules that return for any instance I and profile A, not a budget allocation, but a probability

distribution over Feas(I).
In the coming chapters, and particularly in chapters 5 and 6, wewill introduce several proper-

ties of budget allocations. To avoid unnecessary definitions, we will use the exact same properties

for rules. For a given property X of a budget allocation, we say that a rule R satisfies X if for

every instance I and profile A, the outcome of the (resolute) rule R(I,A) satisfies X . When

needed, we will explicitly specify how properties of budget allocations are li�ed to irresolute

rules.

2.2 �e Voters: Preferences, Utility, Satisfaction and Ballots

Going through the literature on PB, and more generally about computational social choice, it

appears that the terms preferences, utility, satisfaction, and ballots are used in a somewhat inter-

changeable fashion. In the following we suggest exact definitions for each of those, hoping that

it will help to clarify and unify the use of these terms.

One distinction that seems important to us is that of the private and public information of

the voters. �e information submi�ed by the voters, their ballots, is the only information that

is publicly available, especially to the decision maker. In no case can the ballots be assumed to

represent the internal preference model of the voters. Hopefully, the ballots reflect some aspects

of the preferences of the voters, but cannot be claimed to capture it entirely. �is observation is

based on the following two main arguments. First, we know that almost none of the rules we are

studying prevent voters from rationally behaving strategically, so there is no reason to assume

their ballot to be truthful (Gibbard, 1973; Sa�erthwaite, 1975; Dietrich and List, 2007; Meir, 2018;

Peters, 2018). Second, even if voters try to vote truthfully, it is debatable whether they would

be able to produce a ballot that faithfully represents their true internal preferences due to their

bounded rationality (Dhillon and Peralta, 2002; Bendor, Diermeier, Siegel and Ting, 2011). It is

therefore questionable to assume that a voter’s ballot represents their true preferences, even if

voters behave truthfully.

We thus urge researchers to always clarify the assumption they are making about the voters,

about their internal state and about how they cast their ballots. To help with that, we present

below what we believe to be the best way to use this terminology.

◮ Preferences: �e preferences are private information accessible only to the voters them-

selves that reflect their view on the possible outcomes of the decision making scenario.

Remember from the above that this information may not be accessible in full by the vot-

ers (notably because of bounded rationality). In economic theory, it is usually assumed

that preferences take the form of weak or incomplete rankings over the different outcomes

(Lewin, 1996), though other representations of the preferences can be argued for (see e.g.

Hansson, 2001). Note that the term “preferences” sometimes indicates that the preferences

are ordinal, i.e., they are based on ranking of the outcomes.

◮ Utility: �e utility of a voter is a specific type of preferences for which every outcome can

be mapped to a specific numerical value. �ese preferences are sometimes referred to as

cardinal preferences.

◮ Satisfaction: �e satisfaction of a voter is o�en used synonymously with their utility. In

computationally social choice, it is also o�en used when ballots do not allow agents to

report their full utility functions (because of the limited expressiveness of the ballots). In

this case, it represents an approximation of the utility of a voter that would be compatible

with the ballot submi�ed. We shall see concrete example later in this survey. We claim that

7



it is important to always be clear that such satisfaction functions can at most be proxies to

the utilities of the agents, and in no case their actual level of satisfaction or utility (even

if the ballots would allow voters to submit their full preferences). In the following, we

use satisfaction as meaning “the satisfaction that the decision maker is assuming the voter

enjoys”.

◮ Ballots: �e ballot of an agent is the information they submi�ed. �is information is

forma�ed in the format required by the type of ballots that is being used. Let us em-

phasise once again that a ballot is the sole the information submi�ed by the (potentially

strategically-behaving) voter and not necessarily a representation of their private infor-

mation.

In the following we will adopt those definitions and try to use the terms accordingly.
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Chapter 3

Ballot Design

Ballot design is an important part of the research on PB. Indeed, the outcome space being com-

binatorial in nature, the design of the ballots is critical to achieve a good balance between the

amount of information elicited and the practical usability of said ballot. To get the maximum

amount of information, we would want to offer the possibility for the agents to submit their

preferences over all possible budget allocations. �ese could take the forms of orderings over

Feas(I), or utility functions associating a score to every feasible budget allocation π ∈ Feas(I).
�is approach clearly cannot be implement in real life as the size of Feas(I) is exponential in the

number of projects, which in itself might already be quite large (in 2023 there were 138 projects

in the municipal Warsaw PB process1).

Several ballot formats have then been designed in the pursuit of the best trade-off between

the amount of information that is elicited and the usability of the ballot. All of these format

are project-based ballots, i.e., the information collected concerns the projects and not the feasible

budget allocations. �is is mainly because the set of all the feasible budget allocations can be

huge. In what follows, we distinguish between cardinal ballots (Section 3.1)—that associate a

score to each projects—and ordinal ballots (Section 3.2)—that require agents to rank the projects.

We will conclude this section by comparing the different formats (Section 3.3) and discussing

how to define satisfaction function based on different ballots (Section 3.4).

To get an overview of the different ballot formats that have been introduced and the papers

studying them, we present in Table 3.1 a classification of the papers we have reviewed, based on

the ballot format they are considering.

3.1 Cardinal Ballots

Let us start with cardinal ballots. Loosely speaking, when these ballots are used, agents are asked

to submit a score for all projects. Additional constraints are sometimes imposed on the scores.

Note that we refer to this ballot format as cardinal ballots and not utility functions or cardinal

preferences as they are usually called, in line with our discussion in Section 2.2.

Formally, a cardinal ballot Ai : P → R≥0 for agent i ∈ N is a mapping from projects to a

non-negative score. Note that in our definition cardinal ballots associate scores to projects and

not budget allocations. Of course the definition can easily be adapted to allow voters to submit

scores over budget allocations, but since there are almost no papers (the only potential exception

being Jain, Sornat, and Talmon, 2020) working with cardinal ballots over budget allocations, we

decided to keep the simpler definition.

1See the data hosted on pabulib.org (Stolicki, Szufa and Talmon, 2020) and the specific Warsaw 2023 file: poland -

warszawa 2023 .pb.
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Cardinal Ballots

Generic

Benadè, Nath, Procaccia and Shah (2021) — Chen, Lackner and Maly (2022)

— Los, Christoff and Grossi (2022) — Fairstein, Benadè and Gal (2023) —

Fluschnik, Skowron, Triphaus and Wilker (2019) — Hershkowitz, Kahng, Pe-

ters and Procaccia (2021) — Jiang, Munagala and Wang (2020) — Laruelle

(2021)⋆ —Los, Christoff andGrossi (2022) —Munagala, Shen andWang (2022)

— Munagala, Shen, Wang and Wang (2022) — Patel, Khan and Louis (2021)

— Peters, Pierczyński and Skowron (2021)

Approval

Aziz and Ganguly (2021) — Aziz, Gujar, Padala, Suzuki and Vollen (2022)

— Aziz, Lee and Talmon (2018) — Baumeister, Boes and Hillebrand (2021) —

Baumeister, Boes and Laußmann (2022) —Baumeister, Boes and Seeger (2020)

— Brill, Forster, Lackner, Maly and Peters (2023) — Jain, Sornat and Talmon

(2020) — Jain, Sornat, Talmon and Zehavi (2021) — Lackner, Maly and Rey

(2021) — Los, Christoff and Grossi (2022) — Maly, Rey, Endriss and Lackner

(2023) — Motamed, Soeteman, Rey and Endriss (2022) — Rey, Endriss and

de Haan (2020) — Rey, Endriss and de Haan (2021) — Sreedurga, Bhardwaj

and Narahari (2022) — Talmon and Faliszewski (2019)

t-Approval Fairstein, Benadè and Gal (2023)

Knapsack
Benadè, Nath, Procaccia and Shah (2021) — Fairstein, Benadè and Gal (2023)

— Goel, Krishnaswamy, Sakshuwong and Aitamurto (2019)

t-�reshold Benadè, Nath, Procaccia and Shah (2021) — Fairstein, Benadè and Gal (2023)

Cumulative Skowron, Slinko, Szufa and Talmon (2020)

Ordinal Ballots

Strict Orders Lu and Boutilier (2011) — Peters, Pierczyński and Skowron (2021)

Weak Orders Aziz and Lee (2021) — Laruelle (2021)⋆

Value-for

Money

Benadè, Nath, Procaccia and Shah (2021) — Goel, Krishnaswamy, Sakshu-

wong and Aitamurto (2019) — Fairstein, Benadè and Gal (2023)

Value Benadè, Nath, Procaccia and Shah (2021) — Fairstein, Benadè and Gal (2023)

⋆Laruelle (2021) considers that the agents submit weak and complete rankings over the projects, that are then con-

verted into cardinal scores (via positional scoring functions) for the aggregation.

Table 3.1: Papers studying indivisible PB based on the type of ballots they consider. We cate-

gorised the papers based on the main ballot format used in their study, not necessarily based on

all the format mentioned in the paper.
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A common assumption (see, e.g., Peters, Pierczyński, and Skowron, 2021) is that the score of

a budget allocation for an agent is simply the sum of the scores of the projects it contains. We

call this the additivity assumption.

Even though cardinal ballots can be used as is for PB, several important variations have been

introduced that we discuss below.

3.1.1 Approval Ballots

When using approval ballots, agents are asked to submit a subset of projects they approve of.

We represent approval ballots as cardinal ballots by requiring the score of each project to either

be 0 or 1. For agent i ∈ N , their approval ballot Ai : P → {0, 1} is a mapping from P to {0, 1},
where for any p ∈ P , Ai(p) = 1 indicates that agent i approves of project p, and Ai(p) = 0
that i does not approve of p. We will sometimes call voter i ∈ N a supporter of project p ∈ P
whenever Ai(p) = 1.

It is important to state that approval ballots are the most widely used ballot format in real life

PB processes. At the same time, and potentially for that exact reason, it is also the most studied

format in the literature (see Table 3.1).

One of the main drawbacks of approval ballots is that they are semantically weak: not much

information is communicated. In particular, it is unclear what an agent intends to communicate

when not approving a project (se�ing Ai(p) = 0 for project p). It is notably ambiguous whether

this case should be treated as stating a rejection of the project, or simply stating an indifference

status to the project. One way to circumvent this issue is by enforcing additional constraints on

the ballots, that allow us to interpret them more accurately.

3.1.2 Semantically Enriched Approval Ballots

As explained above, the semantics of approval ballots is not well defined. �is lead to various

problems and has prompted researchers to introduce some additional constraints on the approval

ballots to correct this.

In practice, it is o�en the case that voters can only approve of a limited number of projects.

When asked for t-approval ballots, agents can only approve up to t ∈ N>0 different projects. �is

is formalised by imposing
∑

p∈P Ai(p) ≤ t for the ballot Ai of all agents i ∈ N . �is allows us

to get some understanding of the not approved projects: they are not part of the top-t projects
of the voter (assuming that voters can actually order the projects based on their preferences).

One important variation of approval ballots, both in theoretical terms and because of its

actual usage, is the knapsack ballot (Goel, Krishnaswamy, Sakshuwong and Aitamurto, 2019).

A knapsack ballot is an approval ballot with the additional constraint that the total cost of the

approved projects cannot exceed the budget limit b. Formally speaking, it is an approval ballot

Ai such that c({p ∈ P | Ai(p) = 1}) ≤ b. Phrasing it differently, when submi�ing knapsack

ballots, agents are asked to provide their most preferred feasible budget allocation. In this sense,

knapsack ballots have a clear meaning that can be used to make potentially be�er decisions.

Another semantically enriched variation of approval ballot are t-threshold approval ballots

(Benadè, Nath, Procaccia and Shah, 2021; Fairstein, Benadè and Gal, 2023). Here, agents are

assumed to have private additive utility functions that they are aware off, and they are asked to

submit an approval ballot, approving of a project if and only if it provides them with utility at

least t ∈ R.
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3.1.3 Cumulative Ballots

When using cumulative ballots (Skowron, Slinko, Szufa and Talmon, 2020), agents are asked to

distribute a certain amount of money (usually b/n, i.e., their share of the budget) over all the

projects. Formally, a cumulative ballot Ai is a cardinal ballot such that
∑

p∈P Ai(p) ≤ 1. �e

idea behind cumulative ballots is that agents control some share of the budget and indicate how

they would want to use that share.

Note that one could also assume that Ai(p) represents the fraction of the budget limit b that
voters i believes should be allocated to project p (in total). �is interpretation however does not

fit with the assumption that projects are indivisible.

3.2 Ordinal Ballots

�e second main category of ballots that have been studied for PB are ordinal ballots. In this

context, the ballot of an agent is an ordering over the projects. Formally, agent i’s ballot Ai is

a strict linear order over P . We will typically denote it by ≻i where for two projects p, p′ ∈ P ,

p ≻i p
′ indicates that agent i prefers p over p′.

Ordinal ballots can be used as is for aggregation purposes, however, because projects have

different cost, the exact semantics of the ordering is not always clear. Several specific ways of

ranking the projects have thus been proposed.

When submi�ing ranking by value ballots (Benadè, Nath, Procaccia and Shah, 2021), agents

are assumed to provide a strict total order over the projects such that a project p is ranked above
another one p′ if and only p is preferred to p′.

Similarly, ranking by value-for-money ballots (Goel, Krishnaswamy, Sakshuwong and Aita-

murto, 2019) requires agents to provide ranking of the projects based on their value-for-money.

Note that this is only well defined when agents are assumed to have private utility function that

they are aware off.

We have only mentioned strict rankings above, but weak rankings have also been considered

(Aziz and Lee, 2021). A weak ranking will typically be denoted by % with ≻ being the strict

part of the ranking and ∼ the indifference relation, defined as p ∼ p′ if p % p′ and p′ % p; and
p ≻ p′ if p % p′ but not p′ % p, for any two projects p and p′. Of course rankings by value or

value-for-money can be considered either as strict or weak rankings.

Finally, it is worth mentioning that in practice voters are only asked to submit incomplete

ordinal ballots, typically ranking a small number of projects. We are not aware of any work

studying this ballot format, that we could call t-ordinal ballots.

3.3 Comparison of Ballot Formats

Comparing the merits of different ballot formats is not an easy task. Two approaches have been

explored in the literature focusing either on theoretical or empirical results.

3.3.1 Comparison via Distortion

One way to compare different ballot formats is via the distortion (Procaccia and Rosenschein,

2006) they induce. It is a measure of the amount of information communicated by a ballot for-

mat for the purpose of identifying a budget allocation that maximises utilitarian social welfare.

Specifically, under the assumption that agents have cardinal preferences, the distortion of a bal-

lot format measures the ratio between the maximum social welfare achievable in the knowledge

of the full preferences of the agents, to the maximal social welfare achievable when agents sub-

mi�ed their ballots according to the specific format.
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Deterministic Randomised

Distortion Distortion

Bound Lower Upper Lower Upper

Knapsack Ω(2m/
√
m) O(m · 2m) Ω(m) m

Rankings by Value Ω(m2) O(m2) Ω(
√
m) O(

√
m · log(m))

Rankings by Value-for-Money Unbounded Ω(
√
m) O(

√
m · log(m))

Det. t-�reshold Approval⋆ Unbounded Ω(
√
m) m

Rand. t-�reshold Approval⋆ — Ω(log(m)/log log(m)) O(log2(m))

⋆For t-threshold approval ballots, Benadè, Nath, Procaccia and Shah (2021) distinguish between two cases. In the

deterministic case (Det.) the threshold t is chosen arbitrarily by the decision maker once for all the agents. In the

randomised (Rand.) case, for each agent, the threshold t is sampled at random from a given distribution. Note that

this distinction makes li�le sense in the deterministic case.

Table 3.2: Summary of the results on the distortion of some of the ballot formats obtained by

Benadè, Nath, Procaccia and Shah (2021). �e deterministic distortion corresponds to the sit-

uation where only deterministic PB rules are considered. In the randomised distortion se�ing,

randomised PB rules are also considered.

Benadè, Nath, Procaccia and Shah (2021) provide a complete analysis of the distortion induced

by four of the ballot formats we introduced: knapsack and t-threshold approval ballots, rankings
by value and rankings by value-for-money. Table 3.2 presents their findings. Note that they also

complemented their theoretical approach with an empirical one on real-life data. �eir findings

suggest that approval ballots, and more specifically knapsack ballots, may not be the best ballot

format when it comes to PB.2

3.3.2 Comparison via Real-Life Experiments

Another approach to compare ballot formats for PB is to run experiments with human partici-

pants who will be asked to use different formats. �is is the approach that Fairstein, Benadè and

Gal (2023) followed. �ey recruited 1800 participants on Amazon Mechanical Turk who were

then asked to cast their ballot in a format which was selected from a set of 6 for a specific PB

instance (selected from a set of 4 instances). For each participant, the time they needed to vote

is measured. Additionally, they asked the participants to self report on the ease of use of the

different formats.

Some of the findings from Fairstein, Benadè and Gal (2023) are presented in Figure 3.1. �ey

studied the following ballot formats: generic cardinal ballots, 5-approval ballots, knapsack bal-

lots, 10-threshold approval ballots, rankings by value and rankings by value-for-money. Sum-

marising, all the ballot formats they study require a similar amount of time for the participants to

cast, except for ranking by value-for-money for which participants take significantly longer. �e

results are the same for the self-reported measures. Notably, for all measures k-approval ballots
outperform all the other ballot formats, though not by a large margin.

3.4 Ballot-Based Satisfaction

Before we consider how to use the ballots to determine budget allocations through PB rules, let us

discuss how to model satisfaction based on the different ballot format we have introduced. Many

2�e intuition as to why knapsack ballots do not behave well with respect to distortion is that in the worst case,

when all projects cost exactly the budget limit b, knapsack ballots only elicit the favourite project of each agent, and

it is well understood that this information alone is not enough to make a high quality decision.

13



Rank Value-for-Money

Cardinal Ballot

t-�reshold Approval

Rank Value

Knapsack Ballot

t-Approval

780

454

443

431

386

345

Voting Time

in Seconds

3.36

4.07

3.88

3.94

4.00

4.2

Reported

Ease of Use

3.72

4.08

4.05

4.12

4.15

4.21

Reported

Expressiveness

Figure 3.1: Some of the experimental findings of Fairstein, Benadè and Gal (2023) comparing

different ballot formats. �e voting time column indicates the time in seconds it took participants

to submit their opinion for each ballot format. �e reported ease of use and expressiveness

columns represents the average value reported by the participants about the ease of use and the

expressiveness of each ballot format, on a scale from 1 to 5 (the higher the be�er). �e figures have

been reproduced with the authorisation of the authors, using the data available in the GitHub

repository github.com/rfire01/Participatory-Budgeting-Experiment.

of the concepts that we will introduce in the rest of this paper rely on measures of satisfaction.

3.4.1 Generic Cardinal Ballots

When asked for cardinal ballots, voters are asked to report their satisfaction level for each project.

�ere is thus no need to consider anything else than the ballot, at least as long as we are under

the additivity assumption. �is means the satisfaction of a voter is the sum of the score they

submi�ed for the projects that have been selected.

3.4.2 Approval Ballots

When it comes to approval ballots, there is no obvious way to define a measure of the satisfaction

of a voter. Brill, Forster, Lackner, Maly and Peters (2023) introduced the concept of approval-based

satisfaction functions, which are functions translating a budget allocation into a satisfaction level

for the agents, given their approval ballots. Let us provide their definition.

Definition 1 (Approval-Based Satisfaction Functions). Given an instance I = 〈P, c, b〉 and a

profile A, an (approval-based) satisfaction function is a mapping sat : 2P → R≥0 satisfying the

following two conditions:

◮ sat(P ) ≥ sat(P ′) for all P,P ′ ⊆ P such that P ⊇ P ′: the satisfaction is inclusion-

monotonic;

◮ sat(P ) = 0 if and only if P = ∅: the satisfaction is zero only for the empty set.

�e satisfaction of agent i ∈ N for a budget allocation π ∈ Feas(I) is defined as:

sat i(π) = sat({p ∈ π | Ai(p) = 1}).

Note that in contrast to the case of cardinal ballots, satisfaction functions are not generally as-

sumed to be additive. However, we will sometimes make this assumption, i.e., requiring that

sat(P ) =
∑

p∈P sat({p}) for any P ⊆ P .

One might wonder what the difference between an approval profile together with a satisfac-

tion function sat , and a cardinal profile is. Assuming sat is additive, an approval profile with
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a satisfaction function is a special case of a cardinal profile in which every agent approving a

project p has the same satisfaction for p. �is is a natural assumption, given the limited in-

formation about the voters’ preferences. However, some author’s have proposed to model the

satisfaction of voters in a way that also takes additional information into account, for example

the non-approved projects in the winning bundle. �is cannot be modelled with a satisfaction

function as defined by Brill, Forster, Lackner, Maly and Peters (2023). See the discussion below

for more details.

Several satisfaction functions have been introduced in the literature, we define them below.

◮ Cardinality Satisfaction Function (Talmon and Faliszewski, 2019): measures the satis-

faction of the voters as the number of selected and approved projects:

satcard (P ) = |P |.

◮ Cost Satisfaction Function (Talmon and Faliszewski, 2019): measures the satisfaction of

the voters as the cost of the selected and approved projects:

satcost (P ) = c(P ).

Note that with indivisible projects, this is equivalent to the overlap satisfaction function of

Goel, Krishnaswamy, Sakshuwong and Aitamurto (2019).

◮ Chamberlin-Courant Satisfaction Function (Talmon and Faliszewski, 2019): measures

the satisfaction of the voters as being 1 if at least one approved project was selected, and

0 otherwise:

satCC(P ) = 1P 6=∅.

◮ Share (Lackner, Maly and Rey, 2021): measures the resources the decision maker used to

satisfy the voters:

sat share (P ) =
∑

p∈P

c(p)

|{i ∈ N | Ai(p) = 1}| .

It is important to keep in mind that the share has not been introduced as a satisfaction

function but can still be interpreted as one (while being cautious as to how to use it).

◮ Square Root and Log Satisfaction Functions (Brill, Forster, Lackner, Maly and Peters,

2023): measures the satisfaction of the voters as (marginally) diminishing when the cost of

a project increases:

sat log(P ) = log(1 + c(P )) sat
√
(P ) =

√

c(P ).

Both the cardinality and the cost satisfaction are quite standardwithin the literature, even though

they can easily be criticised: there is no good reason to assume that the satisfaction of an agent

is the same for two projects, one being very expensive while the other being particularly cheap;

though it is also not sensible to assume a perfect correlation between satisfaction and cost.

In general, all the above apply seamlessly to all approval-like ballots (t-approval, knapsack,
t-threshold…). Some satisfaction functions are however more meaningful with some ballots than

others. In particular, additional satisfaction functions could be interesting to study when using

semantically richer approval ballots.

It is also worth noting that Brill, Forster, Lackner, Maly and Peters (2023) presented results

that apply to whole classes of satisfaction functions, and not just functions from the list above.

Some of these results will be presented later (notably in Section 5.1 and 5.3).
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Finally, note that a satisfaction function as defined by Brill, Forster, Lackner, Maly and Pe-

ters (2023) only depends on the projects in the winning bundle that the voter approved. �ere-

fore, these functions cannot capture satisfaction functions that also depend on the non-approved

projects in the winning bundle or on the approved projects that have not been funded.

Goel, Krishnaswamy, Sakshuwong and Aitamurto (2019) introduce a measure of the dissat-

isfaction of the voters in terms of the L1 distance between a given budget allocation and their

ballot. �is cannot be modelled by approval-based satisfaction (even though they introduce it

in a framework with knapsack ballots) as the satisfaction of a voters depends on projects that

are outside of the selected and approved ones. It is important to keep in mind however that the

authors deem it to be of very limited relevance when the projects are indivisible.

Lackner, Maly and Rey (2021) proposed the notion of relative satisfaction, which normalises

the satisfaction of a voter by the maximum satisfaction achievable:

relsat sat (P ) =
sat(P )

max{sat(P ′) | P ′ ∈ Feas(I) and Ai(p) = 1,∀p ∈ P ′} ,

where sat is any satisfaction function. Lackner, Maly and Rey (2021) only considered relative

satisfaction associated with the cost satisfaction function satcost . �is can also not be modelled

as an approval-based satisfaction function, as it depends on the full approval ballot of the voter.

3.4.3 Ordinal Ballots

To measure satisfaction with ordinal ballots, one can associate each project in the ordering to a

given satisfaction level. �is is usually done through positional scoring functions that associate to

each project a score that only depends on the position of the project in the ranking. �at is the

approach followed by Laruelle (2021) for instance.

Satisfaction with ordinal ballots can also be defined in more general terms (not simply map-

ping projects to scores). For instance, Aziz and Lee (2021) compare sets of projects according

to the cost of the projects ranked above a certain threshold, where the threshold is contest-

dependent. Note that this assumption is never explicitly stated and that this reflects our under-

standing of their definitions.
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Chapter 4

Participatory Budgeting Rules

We have seen many ways of collecting the opinion of the voters. �e next natural step is thus to

use that information to select “good” budget allocations. �is is done through the use of PB rules.

In this section we will present the main rules that have been introduced in the literature. Note

that in what follows, and in almost the entirety of the paper, we will mainly focus on cardinal

and approval ballots.

Our exposition will start with welfare maximising rules (Section 4.1). �erea�er, we will

discuss three rules based on the idea of finding budget allocations that spread the cost of the se-

lected projects nicely among the voters: the sequential Phragmén rule (Section 4.2), the maximin

support rule (Section 4.3), and the method of equal shares (Section 4.4). A brief overview of the

other rules that have been introduced in PB will conclude this part of our survey (Section 4.5).

4.1 Welfare Maximising Rules

In a purely utilitarian view, agents are assumed to have cardinal preferences over budget alloca-

tions and the aim is to select a budget allocation that maximises the overall utility of the agents.

�at is, utilitarian rules aim to achieve high utilitarian social welfare, where the utilitarian social

welfare—which we denote by Util-SW—is defined as follows: for a given instance I = 〈P, c, b〉,
budget allocation π ∈ Feas(I) and a utility function µi : 2

P → R≥0 for every agent i ∈ N :

Util-SW(I, (µi)i∈N , π) =
∑

i∈N
µi(π).

Here, µi(π) denotes the utility of agent i for allocation π. As already mentioned, the decision

maker does not have access to the utility of the agents, so welfare maximising rules have to be

defined in terms of the assumed satisfaction of an agent given their ballot.

When using cardinal ballots we usually assume that the satisfaction of an agent is equivalent

to their cardinal ballot. �erefore the above definition directly induces a PB rule if, in a slight

abuse of notation, we equate the ballot of a voter with their utility: for a given I and A, select

the budget allocation that maximises Util-SW:1

Util-SW(I,A, π) =
∑

i∈N

∑

p∈P
Ai(p).

�is measures the total satisfaction of the voters (assuming additivity for the cardinal ballots).

1Note that even though the signature of the functions may look the same, there is a clear conceptual difference

between the social welfare defined with utility functions, and Util-SW for cardinal ballots: the former uses private

information of the voters, while the la�er is only defined with respect to public information provided by the voters.
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Given an instance I and a profile A, selecting the budget allocation π ∈ Feas(I) that max-

imises Util-SW(I,A, π) defines a rule, the utilitarian welfare maximising rule.

We thus have seen a first example of a PB rule. Inwhat followswewill review other utilitarian

rules that have been introduced in the literature.

4.1.1 Exact Welfare Maximisation with Approval Ballots

In Section 3.4, we have introduced so-called satisfaction functions to measure the satisfaction of

the voters when using approval ballots. �e definition of the utilitarian social welfare can then

be parametrised by a satisfaction function. Given a satisfaction function sat , the utilitarian social

welfare of a budget allocation π ∈ Feas(I) given an instance I = 〈P, c, b〉, profileA of approval

ballots is defined as:

Util-SW[sat ](I,A, π) =
∑

i∈N
sat i(π).

Remember that sat i(π) = sat({p ∈ π | Ai(p) = 1}).
Among the first PB rules to have been introduced in the literature are two utilitarian welfare

maximisation rules (Talmon and Faliszewski, 2019). �ey make use of the cardinality and cost

satisfaction functions.

�e cardinality welfare maximising rule MaxCard is defined for any instance I and approval
profileA as:

MaxCard(I,A) = argmax
π∈Feas(I)

Util-SW
[

satcard
]

(I,A, π)

= argmax
π∈Feas(I)

∑

i∈N
|{p ∈ π | Ai(p) = 1}|.

Similarly, the cost welfare maximising rule MaxCost is defined for any instance I and ap-

proval profileA as:

MaxCost(I,A) = argmax
π∈Feas(I)

Util-SW
[

satcost
]

(I,A, π)

= argmax
π∈Feas(I)

∑

i∈N
c({p ∈ π | Ai(p) = 1}).

�ese definitions give rise to irresolute rules. Remember that we want to work with resolute

rules in this survey. �ey can be obtained by using some fixed tie-breaking mechanism between

all budget allocations maximising Util-SW.

Interestingly, these two rules can be reinterpreted in terms of approval score: given an in-

stance I and a profileA of approval ballots, the approval score of a project p ∈ P inA, denoted

by app(p,A), is defined as app(p,A) = |{i ∈ N | Ai(p) = 1}|. For any I andA, we then have:

MaxCard(I,A) = argmax
π∈Feas(I)

∑

p∈π
app(p,A),

MaxCost(I,A) = argmax
π∈Feas(I)

∑

p∈π
app(p,A) · c(p).

�ese two formulation will prove useful when drawing parallel with the knapsack problem

(Kellerer, Pferschy and Pisinger, 2004).

As we will see later (Section 7.2), it is computationally difficult to compute the outcome of

these two rules, at least at a theoretical level.2 For this reason, greedy approximations of the

utilitarian social welfare have also been considered.
2In practice, there are rather efficient techniques for solving knapsack problems that can be used.
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4.1.2 Greedy Approximation of the Welfare Maximiser with Approval Ballots

Exploiting the connection between the maximisation of Util-SW and various knapsack prob-

lems. We can use the prolific literature on the topic (Kellerer, Pferschy and Pisinger, 2004) to

derive PB rules approximating the maximum utilitarian social welfare. Let us first define the

general scheme of a greedy rule.

Definition 2 (Greedy Scheme). Consider an instance I = 〈P, c, b〉 and a strict ordering ⊲ over

P . �e greedy scheme Greed(I,⊲) is a procedure selecting a budget allocation π iteratively as

follows. �e budget allocation π is initially empty. Projects are considered in the order defined by

⊲. When considering project p for current budget allocation π, p is selected (added to π) if and only
c(π ∪ {p}) ≤ b. If there is a next project according to ⊲, it is considered; otherwise π is the output

of Greed(I,⊲).

With that scheme in mind, we are now ready to define the two greedy variants of MaxCard

andMaxCost, initially introduced by Talmon and Faliszewski (2019).

Let us first consider the greedy cardinality welfare rule, GreedCard. Given an instance I and
a profile A, we say that an ordering of the projects ⊲ is compatible with app/c if we have p ⊲ p′

if and only if app(p,A)/c(p) ≥ app(p′,A)/c(p′), that is, if the projects are ordered in ⊲ according to

their approval score divided by their cost. For any I andA, GreedCard is then defined as:

GreedCard(I,A) = {Greed(I,⊲) | ⊲ is compatible with app/c}.

Similarly, given I and A, an ordering of the projects ⊲ is compatible with app if we have

p ⊲ p′ if and only if app(p,A) ≥ app(p′,A), that is, if the projects are ordered in ⊲ according

to their approval score. �e greedy cost welfare rule GreedCost is then defined for any I andA

as:

GreedCost(I,A) = {Greed(I,⊲) | ⊲ is compatible with app}.
As before, we defined these rules in irresolute terms. To make them resolute one would need

to simply select one suitable ordering of the projects. Note that this can also be interpreted in

terms of breaking ties between projects.

Interestingly, we know from the knapsack literature that these two greedy rules approximate

their respectivewelfare objectivewithin a factor 2 (Kellerer, Pferschy, and Pisinger, 2004, Chapter

2).3 �is is particularly clear when considering the approval-score based definitions ofMaxCard

andMaxCost.

A final important fact to keep in mind is that the greedy cost welfare rule, GreedCost, is

actually the rule that is the most widely used in practice. �is makes it an important rule to

consider in any analysis.

4.1.3 Other Welfare-Based Rules

On top of the four rules we defined above, Talmon and Faliszewski (2019) introduce five extra

rules. �ey additionally consider welfare defined in terms of satCC (see Section 3.4), and an-

other greedy scheme to approximate the maximum social welfare (proportional greedy rules).

Baumeister, Boes and Seeger (2020) complemented the work of Talmon and Faliszewski (2019),

showing that two of their rules are actually equivalent, and introducing another greedy scheme

(hybrid greedy rules).

Another measure of social welfare was studied by Sreedurga, Bhardwaj and Narahari (2022)

in the context of PB with approval ballots: maximin social welfare—which we call egalitarian

3Note that for the factor 2 approximation to be formally correct, one needs to either take the outcome of the rules

has we defined them, or the most valuable item, whichever has the highest score.
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social welfare in Section 7.2—that measures the welfare of a society as the satisfaction of its least

satisfied member. Sreedurga, Bhardwaj and Narahari (2022) consider the maximisation of the

egalitarian social welfare as a PB rule, studying its computation and its axiomatic properties.

Our focus was mainly on approval ballots, though a similar approach has been followed for

cardinal ones. Fluschnik, Skowron, Triphaus andWilker (2019) study utilitarian and Chamberlin-

Courant social welfare (that aims at finding diverse knapsacks in their terminology) with cardinal

ballots. �ey also study the maximisation of the Nash social welfare, defined as the product of

the satisfaction of the agents (once again defined formally in Section 7.2). �eir motivation is

more algorithmic, however, and they don’t necessarily aim to devise PB rules.

Finally coming to ordinal ballots, Laruelle (2021) studies welfare optimising rules with weak

ordinal ballots where positional scoring functions are used to measure the satisfaction of a voter

(thus obtaining something equivalent to cardinal ballots). Within this framework, Laruelle (2021)

defines greedy approximations of the utilitarian social welfare, and one greedy approximation for

Chamberlin-Courant social welfare (there called Rawlsian social welfare) that aims at providing

every agent with at least one satisfactory project (see Section 7.2 for a formal definition).

4.2 �e Sequential Phragmén Rule

We now leave the world of rules based on measures of social welfare and turn to other kinds of

rules. �e first one we present is the sequential Phragmén rule, an adaptation of a rule introduced

at the end of the 19th century by the Swedish mathematician Lars Edvard Phragmén (Janson,

2016). �is rule aims to provide proportional representation, which will be studied in more detail

in Chapter 5.

�is rule can only be applied with approval ballots. It was formally studied in the multi-

winner literature by Brill, Freeman, Janson and Lackner (2017), and has then been adapted for

the PB se�ing by Los, Christoff and Grossi (2022).

Definition 3 (Sequential Phragmén, Continuous Formulation). Given an instance I and a profile
A of approval ballots, the Sequential Phragmén rule, SeqPhrag, constructs budget allocations

using the following continuous process.

Voters receive money in a virtual currency. �ey all start with a budget of 0 and that budget

continuously increases as time passes. At time t, a voter will have received t money. For any time

t, let P ⋆
t be the set of projects p ∈ P for which the supporters of p altogether have more than

c(p) money available. As soon as, for a given t, P ⋆
t is non-empty, if there exists a p ∈ P ⋆ such

that c(π ∪ {p}) > b, the process stops; otherwise one project from P ⋆
t is selected, the budget of its

supporters is set to 0, and the process resumes.

Breaking the ties among the projects in any P ⋆
t in the above definition will lead to a resolute

rule. In the irresolute variants, one would consider all possible ways of breaking such ties.

�e termination condition we stated above can be surprising at first sight. It is needed for

the rule to satisfy priceability4, which however comes at the cost of exhaustiveness (see Sections

5.3 and 6.1).

�e sequential Phragmén rule can also be formalised in a discrete fashion where the loads

of the voters are to be balanced. �ese two formulation are equivalent. We provide below the

second formulation (see, e.g., Brill, Forster, Lackner, Maly, and Peters, 2023).

4Note that phrasing the termination condition as it is here also implies that none of the results rely on the way

ties are being broken. If one were to use the stopping condition “the rule stops as soon as it would select a project

leading to a violation of the budget constraint”, priceability would only be satisfied when ties are broken in favour of

the most expensive project.
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Definition 4 (Sequential Phragmén, Discrete Formulation). Given an instance I and a profile

A of approval ballots, the sequential Phragmén rule, SeqPhrag, constructs a budget allocation

π, initially empty, iteratively as follows. A load ℓi : 2P → R≥0, is associated with every agent

i ∈ N , initialised as ℓi(∅) = 0 for all i ∈ N . Given π, the new maximum load for selecting project

p ∈ P \ π is defined as:

ℓ⋆(π, p) =
c(p) +

∑

i∈N Ai(p) · ℓi(π)
|{i ∈ N | Ai(p) = 1}| .

At a given round with current budget allocation π, let P ⋆ ⊆ P be such that:

P ⋆ = argmin
p∈P\π

ℓ⋆(π, p).

If there exists p ∈ P ⋆ such that c(π ∪ {p}) > b, sequential Phragmén terminates and outputs π.
Otherwise, a project p ∈ P ⋆ is selected (π is updated to π ∪ {p}) and the agents’ load are updated:
If Ai(p) = 0, then ℓi(π ∪ {p}) = ℓi(π), and otherwise ℓi(π ∪ {p}) = ℓ⋆(π, p).

As before, to obtain a resolute rule one needs to break the ties among the projects in any P ⋆. �e

irresolute variant is obtained by considering all possible ways of breaking such ties.

4.3 �e Maximin Support Rule

We can also adapt the definition of sequential Phragmén slightly and allow a redistribution of the

loads in each round. �is leads to the definition of the maximin support rule. �is rule was first

introduced by Aziz, Lee and Talmon (2018) in the PB se�ing. Note that they named it sequential

Phragmén though the actual rule they define is a generalisation of the maximin support rule

from multi-winner voting (Sánchez-Fernández, Fernández-Garcı́a, Fisteus and Brill, 2022).5

�e maximin support rule is defined for approval ballots as follows.

Definition 5 (Maximin Support Rule). Given an instance I and a profileA of approval ballots, the

maximin support rule,MaximinSupp, constructs a budget allocation π, initially empty, iteratively

as follows.

Given I ,A and a subset of projects P ⊆ P , a load distribution ℓ = (ℓi)i∈N for P is a collection

of functions ℓi : 2
P → R≥0 for every agent i ∈ N such that

∑

i∈N ℓi = c(p) for all project p ∈ P
and ℓi(p) = 0 for all agent i ∈ N and project p ∈ P such that Ai(p) = 0. Omi�ing I and A, we

denote by L(P ) the set of all the load distribution for P ⊆ P .

At a given round with current budget allocation π, let P ⋆ ⊆ P be such that:

P ⋆ = argmin
p∈P\π

max
ℓ∈L(π∪{p})

i∈N

∑

p′∈π∪{p}
ℓi(p).

If there exists p ∈ P ⋆ such that c(π ∪ {p}) > b, the maximin support rule terminates and outputs

π. Otherwise, a project p ∈ P ⋆ is selected (π is updated to π ∪ {p}) and a new round begins.

Once again, to obtain a resolute rule one needs to break the ties among the projects in any P ⋆.

�e irresolute variant is obtained by considering all possible ways of breaking such ties.

Note that in their definition, Aziz, Lee and Talmon (2018) provide a linear program to compute

efficiently the optimum load distribution in each round.

Interestingly, we know from the multi-winner voting literature thatMaximinSupp provides

approximation guarantees (to the optimum load distribution ) that SeqPhrag does not (Cevallos

and Stewart, 2021). �is makes it a rule that deserves further investigation.

5�is was observed by Brill, Forster, Lackner, Maly and Peters (2023).
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4.4 �e Method of Equal Shares

�e next rule we introduce is called theMethod of Equal Shares (formerly known as Rule X). It is

similar to SeqPhrag (in its continuous formulation) orMaximinSupp except that agents receive

all their money initially.

�is rule has been introduced for PB by Peters, Pierczyński and Skowron (2021)6 for generic

cardinal ballots, based on the version for multi-winner voting introduced by Peters and Skowron

(2020). We provide their definition below.7

Definition 6 (Method of Equal Shares for Cardinal Ballots). Given an instance I = 〈P, c, b〉 and
a profile A of cardinal ballots, the method of equal shares, MES, constructs a budget allocation π,
initially empty, iteratively as follows.

A load ℓi : 2
P → R≥0, is associated with every agent i ∈ N , initialised as ℓi(∅) = 0 for all

i ∈ N . �e load represents how much virtual money the agents have spent.

Given π and a scalar α ≥ 0, the contribution of agent i ∈ N for project p ∈ P \π is defined by:

γi(π, α, p) = min (b/n − ℓi(π), α ·Ai(p)) .

�is is the amount iwould pay to buy project p for a given α. Note that the above means that agents

are initially provided b/n units of the virtual currency.

Given a budget allocation π, a project p ∈ P \ π is said to be α-affordable, for α ≥ 0, if

∑

i∈N
γi(π, α, p)· ≥ c(p).

A project is thus α-affordable if, for the given α, all the agents can contribute enough to afford p.
At a given round with current budget allocation π, if no project is α-affordable for any α, MES

terminates.

Otherwise, it selects a project p ∈ P \ π that is α⋆-affordable where α⋆ is the smallest α such

that one project is α-affordable (π is updated to π ∪ {p}). �e agents’ loads are then updated:

ℓi(π ∪ {p}) = ℓi(π) + γi(π, α, p). A new round then starts.

�e above definition gives rise to a resolute rule (when ties among α⋆ affordable projects are

broken arbitrarily). For the irresolute variant of the rule, one would need to consider all ways to

break the ties between α⋆ affordable projects at each round.

We observe that MES does not necessarily spend the whole budget, i.e., it is not exhaustive

(see Definition 54). Indeed, it is possible that no project is α-affordable for any α, in which case

MES returns the empty set. For this reason, in practiceMES nearly always needs to be combined

with a completion method. We discuss this point in more detail in Section 6.1.

�e definition of MES can easily be adapted for approval ballots. Note that since approval

ballots are just restricted cases of cardinal ones, MES can actually be used as is. However, since

the cardinal ballot are meant to represent the voters’ utility for the projects, it is more natural to

parametrizeMES for approval ballots by a satisfaction function (Brill, Forster, Lackner, Maly and

Peters, 2023).

Definition 7 (Method of Equal Shares for Approval Ballots). Given an instance I = 〈P, c, b〉
and a profile A of approval ballots, the method of equal shares for the satisfaction function sat ,

MES[sat], constructs a budget allocation π, initially empty, iteratively as follows.

6Note that for all reference to Peters, Pierczyński and Skowron (2021) we advise the reader to consider the extended

version, updated in November 2022 and available at arxiv.org/abs/2008.13276.
7For a description of the Method of Equal Shares aimed at non-experts, see equalshares.net, a website maintained

by Dominik Peters.
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A load ℓi : 2
P → R≥0, is associated with every agent i ∈ N , initialised as ℓi(∅) = 0 for all

i ∈ N . �e load represents how much virtual money the agents have spent.

Given π and a scalar α ≥ 0, the contribution of agent i ∈ N for project p ∈ P \π is defined by:

γi(π, α, p) = Ai(p) ·min (b/n − ℓi(π), α · sat({p})) .

�is is the amount i would pay to buy project p for a given α. Importantly, i only contribute to p if

Ai(p) = 1, i.e., if i approves of p. Note that the above means that agents are initially provided b/n
units of the virtual currency.

Given a budget allocation π, a project p ∈ P \ π is said to be α-affordable, for α ≥ 0, if

∑

i∈N
γi(π, α, p)· ≥ c(p).

A project is thus α-affordable if, for the given α, all the agents can contribute enough to afford p.
At a given round with current budget allocation π, if no project is α-affordable for any α,

MES[sat] terminates.

Otherwise, it selects a project p ∈ P \ π that is α⋆-affordable where α⋆ is the smallest α such

that one project is α-affordable (π is updated to π ∪ {p}). �e agents’ loads are then updated:

ℓi(π ∪ {p}) = ℓi(π) + γi(π, α, p). A new round then starts.

Notice that in the above, sat is only ever used on singletons. Notably, this implies that even if

sat is not additive,MES[sat] is still well-defined.

4.5 Other Rules for Participatory Budgeting

We have introduced what we believe to be the most prominent rules in the literature for PB.

�ese are obviously not the only ones that have been defined. We briefly comment on other

rules.

In the multi-winner literature,�iele methods play an important role (Lackner and Skowron,

2023). It can thus be surprising that this is not the case in the PB se�ing. It turns out that these

rules do not behave as nicely in PB as they did in multi-winner voting. In particular, Proportional

Approval Voting (PAV) that provides interesting proportionality guarantees in multi-winner vot-

ing (Aziz, Brill, Conitzer, Elkind, Freeman and Walsh, 2017), no longer enjoys them in the non

unit-cost se�ing as shown by Peters, Pierczyński and Skowron (2021) and Los, Christoff and

Grossi (2022).

Among the other rules that have been defined, Skowron, Slinko, Szufa and Talmon (2020)

propose an adaptation of the multi-winner variant of the Single Transferable Votes rule (STV) in

the PB se�ing with cumulative ballots.

When considering ordinal ballots, Aziz and Lee (2021) introduced the expanding approvals

rule for PB. Peters, Pierczyński and Skowron (2021) proposed an ordinal version of MES, showing

that it is an expanding approvals rule.8

8�is part is only available in the extended version, available at arxiv.org/abs/2008.13276.
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Chapter 5

Fairness in Indivisible Participatory

Budgeting

All the ingredients are now in place: We have introduced the basic se�ing (Chapter 2), discussed

how the voters can submit their opinion (Chapter 3), and finally how to take these opinions into

account to select budget allocations (Chapter 4). However, defining the rules is only the first step,

we still need to assess their respective merits.

�roughout this section we will study different PB rules in terms of their fairness guarantees.

�is represents the largest share of the literature devoted to the analysis of PB rules and has

proved to be a rich and fruitful research direction.

�is section is mainly organised around the different types of fairness requirements that

have been introduced. We will start with the concepts revolving around justified representation

(Section 5.1) which will naturally lead us to the idea of the core (Section 5.2). We will then

discuss the idea of priceability (Section 5.3). Broadening our perspective, our next focus will be

fairness in ordinal PB (Section 5.4), and more generally all the other notions of fairness that have

been introduced (Section 5.5). In an a�empt to unify everything, we will then draw taxonomies

linking the requirements to each others (Section 5.7). We will conclude by discussing fairness in

extended models of PB (Section 5.6).

5.1 Extended and Proportional Justified Representation

�emain part of the research on fairness in PB focuses on adapting to PB thewell studied concept

of justified representation from the multi-winner voting literature (Aziz, Brill, Conitzer, Elkind,

Freeman andWalsh, 2017; Aziz, Elkind, Huang, Lackner, Sánchez-Fernández and Skowron, 2018;

Bredereck, Faliszewski, Kaczmarczyk and Niedermeier, 2019; Peters and Skowron, 2020; Lackner

and Skowron, 2023). �e idea behind justified representation is that groups of agents that are

large enough and similar enough, the so called cohesive groups, deserve to be satisfied with a

fraction of the outcome that is proportional to their size.

In the followingwewill define themost important concepts related to justified representation

and presents the main results from the literature. Figures 5.1 and 5.2 summarise (among others)

the results presented in this section.

5.1.1 Justified Representation with Cardinal Ballots

We first consider the general case of cardinal ballots. A special focus on approval ballots will

come later.
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5.1.1.1 Cohesive Groups for Cardinal Ballots

Let us start with the definition of cohesive groups. We follow the definition of Peters, Pierczyński

and Skowron (2021).

Definition 8 ((α,P )-Cohesive Groups). Given an instance I = 〈P, c, b〉 and a profile A of car-

dinal ballots, a non-empty group of agents N ⊆ N is said to be (α,P )-cohesive, for a function

α : P → [0, 1] and a set of projects P ⊆ P , if the following two conditions are satisfied:

◮ α(p) ≤ Ai(p) for all i ∈ N , that is, α is lower-bounding the score of the agents in N ;

◮
|N |
n

· b ≥ c(P ), that is, N ’s share of the budget is enough to afford P .

Overall, for any (α,P )-cohesive group of agents N ⊆ N , the following holds: (i) N is large

enough to afford the projects in P , and, (ii) cohesive enough to “deserve” the satisfaction they

receive from the projects in P , measured by α.
We will make use of one specific function α denoted by αmin and defined for any profile A

and subset of agents N ⊆ N as:

αmin
N,A(p) = min

i∈N
Ai(p), for all p ∈ P.

�is function simply takes the minimum score submi�ed by any agent in N for project p. Note
that for every group of agents N ⊆ N and subset of projects P ⊆ P , if |N |/n · b ≥ c(P ) thenN
is (αmin

N,A, P )-cohesive.

5.1.1.2 Extended Justified Representation for Cardinal Ballots

Wewant to ensure that cohesive groups receive what they deserve. But what exactly do cohesive

groups deserve? Consider an (α,P )-cohesive groupN . Since agents inN control enough share

of the budget to afford P , the most natural idea would be to guarantee all agents inN at least as

much satisfaction as they all agree P would offer them (captured by α). �is idea is captured by

the following axiom: strong extended justified representation.1

Definition 9 (Strong Extended Justified Representation). Given an instance I = 〈P, c, b〉 a profile
A of cardinal ballots, a budget allocation π ∈ Feas(I) is said to satisfy strong extended justified

representation (Strong-EJR) if for all P ⊆ P , all (αmin
N,A, P )-cohesive groups N , and all i ∈ N , we

have:
∑

p∈π
Ai(p) ≥

∑

p∈P
min
i∈N

Ai(p).

Remember that when using cardinal ballots, we made the assumption that the satisfaction of

an agent behaves additively, so the le�-hand-side of the inequality above represents the agent’s

satisfaction.

Even though Strong-EJR is quite appealing (or at least somewhat natural), it is unsatisfiable in

general. �is was already observed inmulti-winner voting (Aziz, Brill, Conitzer, Elkind, Freeman

and Walsh, 2017).

Given this impossibility, the focus is usually put on (simple) extended justified representation

(Aziz, Brill, Conitzer, Elkind, Freeman and Walsh, 2017; Peters, Pierczyński and Skowron, 2021).

�is is a weakening of Strong-EJR requiring only one member of each cohesive group to reach

the satisfaction threshold. We thus switch one quantifier from a universal one to an existential

one in the definition.
1Note here that we slightly differ from the definition of Peters, Pierczyński and Skowron (2021). Indeed, in the

definition of Strong-EJR (and EJR) they consider any (α, P )-cohesive group while we only use a specific α, namely

αmin. �e two definitions are however equivalent and we believe this one to be clearer since it requires one less

universal quantification.
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Definition 10 (Extended Justified Representation). Given an instance I = 〈P, c, b〉 a profileA of

cardinal ballots, a budget allocation π ∈ Feas(I) is said to satisfy extended justified representation
(EJR) if for all P ⊆ P and all (αmin

N,A, P )-cohesive groups N , there exists i ∈ N such that:

∑

p∈π
Ai(p) ≥

∑

p∈P
min
i∈N

Ai(p).

�e first thing to note is that EJR does not suffer the same drawback as Strong-EJR: it can

always be satisfied.

�eorem 11 (Peters, Pierczyński and Skowron 2021). For every instance I , there exists a budget

allocation π ∈ Feas(I) that satisfies EJR.

What Peters, Pierczyński and Skowron (2021) actually prove is that a greedy cohesive rule2 always

returns a feasible budget allocation that satisfies EJR (it even satisfies full justified representation,

see Section 5.5.1). �is rule is interesting at a theoretical level but is quite artificial and thus not

really appealing at a practical level. One of its main drawbacks is that it runs in exponential time.

�is however, seems to be unavoidable to satisfy EJR.

�eorem 12 (Peters, Pierczyński and Skowron 2021). �ere is no strongly polynomial time algo-

rithm that computes, given an instance I and a profile A of cardinal ballots, a budget allocation

π ∈ Feas(I) satisfying EJR unless P = NP, even if there is only one voter.

Interestingly, the hardness proof shows that the running time of an algorithm finding an EJR

budget allocation has to be exponential in log(b), while the greedy cohesive rule mentioned

above runs in time exponential in n, the number of voters. Closing this gap is an interesting

open problem.

Let us quickly mention another computational result: checking whether a given budget al-

location satisfies EJR is a coNP-complete problem. �is is because it was already the case in the

unit-cost se�ing with approval ballots (Aziz, Brill, Conitzer, Elkind, Freeman and Walsh, 2017).

In the hope of achieving polynomial-time computability, a relaxation of EJR has been intro-

duced: EJR up to one project (EJR-1). It relaxes EJR in the following way: for each cohesive group

N , it could be the case that no agent in N enjoys enough satisfaction, but, at least one agent

would reach the desired level of satisfaction if we were to select an additional project. �is con-

cept can be interpreted as requiring that the satisfaction can only be of at most one project away

from the objective.

Definition 13 (Extended Justified Representation up to One Project). Given an instance I =
〈P, c, b〉 a profile A of cardinal ballots, a budget allocation π ∈ Feas(I) is said to satisfy extended

justified representation up to one project (EJR-1) if for all P ⊆ P and all (αmin
N,A, P )-cohesive

groups N , there exists i ∈ N such that either
∑

p∈π Ai(p) ≥
∑

p∈P α(p), or for some p⋆ ∈ P \ π
we have:

Ai(p
⋆) +

∑

p∈π
Ai(p) >

∑

p∈P
min
i∈N

Ai(p).

One might be surprised by the strict inequality in the definitions above. It is there for technical

reasons: It ensures that EJR and EJR-1 coincide in the unit cost se�ing when used with approval

2�e idea behind a greedy cohesive rule is to consider all the cohesive groups, and to greedily select sets of projects

P for which there is a suitable (α, P )-cohesive group with “maximum” α. �is is a general scheme for procedures as

the notion of “suitable cohesive group” differs depending on the goal. Such procedures have notably been defined and

studied by Aziz, Lee and Talmon (2018), Peters, Pierczyński and Skowron (2021) and Maly, Rey, Endriss and Lackner

(2023).
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ballots.3 It also has interesting consequences in terms of the fairness properties that EJR-1 im-

plies.4

One of the main results from Peters, Pierczyński and Skowron (2021) is thatMES does satisfy

EJR-1. Given that MES runs in strongly polynomial-time, this shows that a budget allocation

satisfying EJR-1 can always be computed in polynomial time.

�eorem 14 (Peters, Pierczyński and Skowron 2021). For every instance I and profile A of car-

dinal ballots, MES(I,A) satisfies EJR-1.

5.1.1.3 Proportional Justified Representation for Cardinal Ballots

Going down the list of weakenings of Strong-EJR, we have now reached proportional justified

representation (PJR) (Sánchez-Fernández, Elkind, Lackner, Fernández, Fisteus, Val and Skowron,

2017). While EJR required at least one member of each cohesive group to enjoy the required

satisfaction, PJR requires the group altogether—acting as a single agent—to achieve the required

satisfaction. We provide below the definition from Los, Christoff and Grossi (2022) who defined

it for PB with cardinal ballots.

Definition 15 (Proportional Justified Representation). Given an instance I = 〈P, c, b〉 a profile

A of cardinal ballots, a budget allocation π ∈ Feas(I) is said to satisfy proportional justified

representation (PJR) if for all P ⊆ P and all (αmin
N,A, P )-cohesive groups N we have:

∑

p∈π
max
i∈N

Ai(p) ≥
∑

p∈P
min
i∈N

Ai(p).

It should be quite obvious that any budget allocation satisfying EJR also satisfies PJR. From

this, we can derive that theorems 11 and 12 also apply to PJR. Specifically, we know that (i) for

every instance, there exists a feasible budget allocation that satisfies PJR, and (ii) there exists no

polynomial-time algorithm computing PJR budget allocations unless P = NP. To see why the

second point holds, observe that PJR and EJR coincide when there is only a single agent and that

�eorem 12 holds for one-agent profiles.

Interestingly, the problem of checking whether a budget allocation satisfies PJR or not is still

a coNP-complete (remember that this was already the case for EJR), and that, already on unit-cost

instances with approval ballots (Aziz, Elkind, Huang, Lackner, Sánchez-Fernández and Skowron,

2018).

Los, Christoff and Grossi (2022) show that a PB adaption of the PAV rule fails to satisfy PJR.

�is can come as a surprise since PAV satisfies EJR in the case of multi-winner voting elections.

�is last axiom concludes our section on cardinal ballots, we will now focus on approval

ballots.

5.1.2 Justified Representation with Approval Ballots

All we presented above for cardinal ballots also applies in the case of approval ballots. However,

since approval ballots are a special case of cardinal ballots, the definitions can be simplified and

stronger results can be obtained.

3EJR and EJR-1 do not coincide in the unit cost se�ing with generic cardinal ballots as presented by Peters, Pier-

czyński and Skowron (2021) in Footnote 8 of the ArXiv version.
4Notably, having a strict inequality ensures that EJR-1 implies a property that could be called basic proportionality,

which requires that if for a group of agentsN there exists a P ⊆ P such that |N|/n·p ≥ c(P ) andAi(p) = Aj(p) > 0
if and only if p ∈ P for all i, j ∈ N , then P must be selected. �is is not the case if EJR-1 is defined with a weak

inequality.
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5.1.2.1 Cohesive Groups for Approval Ballots

With cardinal ballots we had to introduce the α parameter to the definition of a cohesive group,

since agents could assign different scores to the projects. �is is not necessary with approval

ballots.

Definition 16 (P -cohesive groups). Given an instance I = 〈P, c, b〉 and a profile A of approval

ballots, a non-empty group of agents N ⊆ N is said to be P -cohesive, for a set of projects P ⊆ P ,

if the following two conditions are satisfied:

◮ for all p ∈ P and i ∈ N , Ai(p) = 1, that is, every agent in N approves all projects in P ;

◮
|N |
n

· b ≥ c(P ), that is, N ’s share of the budget is enough to afford P .

Remember the interpretation we had of cohesive groups: a group of agents that deserves

some satisfaction in the final outcome. When using approval ballots, we will use (approval-based)

satisfaction functions as introduced in Section 3.4 as measures of satisfaction.

5.1.2.2 Extended Justified Representation for Approval Ballots

Having defined cohesive groups, we are now ready to introduce concepts based on justified rep-

resentation for approval ballots. Note that they are all parameterised by a satisfaction function.

We start with Strong-EJR.

Definition 17 (Strong-EJR for Approval Ballots). Given an instance I = 〈P, c, b〉 a profile A

of approval ballots, and a satisfaction function sat , a budget allocation π ∈ Feas(I) is said to

satisfy strong extended justified representation for sat (Strong-EJR[sat ]) if for all P ⊆ P and all

P -cohesive groups N , we have sat i(π) ≥ sat i(P ) for all agents i ∈ N .

As for cardinal ballots, Strong-EJR[sat ] is quite appealing, but not satisfiable in general.

Proposition 18. For any satisfaction function sat , there exists an instance I such that no budget

allocation π ∈ Feas(I) satisfies Strong-EJR[sat ].5

EJR can also be adapted quite naturally to this se�ing and can be shown to be always satis-

fiable in exponential time (using some variant of the greedy cohesive rule).

Definition 19 (Extended Justified Representation for Approval Ballots). Given an instance I =
〈P, c, b〉 a profile A of approval ballots, and a satisfaction function sat , a budget allocation π ∈
Feas(I) is said to satisfy extended justified representation for sat (EJR[sat]) if for all P ⊆ P and

all P -cohesive groups N , there exists i ∈ N such that sat i(π) ≥ sat i(P ).

�eorem 20 (Brill, Forster, Lackner, Maly and Peters 2023). For every instance I and every satis-

faction function sat , there exists a budget allocation π ∈ Feas(I) that satisfies EJR[sat].

Unfortunately, for large classes of satisfaction functions, it is not possible to satisfy EJR in

polynomial time.

5We are not aware of this result existing in the literature. �e proof is rather simple, it relies on a counter example

using three projects p1, p2 and p3, all of cost 1. �e budget limit is 2. �ere are four agents with the following ballots:

Agent 1 approves only of p1. Agent 2 approves only of p2. Agent 3 approves only of p3. Agent 4 approves of p1, p2
and p3. Recall that we assume for any satisfaction function sat that sat(P ) = 0 if and only if P = ∅. �erefore, the

only way to satisfy Strong-EJR[sat] is to select p1, p2 and p3 which is not possible with b = 2.
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�eorem 21 (Brill, Forster, Lackner, Maly and Peters 2023). Let I be an instance and sat be a

satisfaction function such that for all P,P ′ ⊆ P such that c(P ) < c(P ′) we have sat(P ) <
sat(P ′). �en, there is no algorithm running in strongly polynomial-time that computes, given an

instance I and a profileA of approval ballots, a budget allocation π ∈ Feas(I) satisfying EJR-[sat ]
unless P = NP, even if there is only one voter.

It is important to note that satcard is not captured by the above statement, and indeed, budget al-

locations satisfying EJR[satcard ] can always be computed in polynomial time usingMES[satcard ]
(Peters, Pierczyński and Skowron, 2021; Los, Christoff and Grossi, 2022). �is is because for

satcard , EJR[satcard ] and EJR-1[satcard ] coincide (the la�er is defined below).

For the same reasons as when we were considering cardinal ballots, checking whether a

budget allocation satisfies EJR or not is coNP problem.

EJR-1 can also be adapted quite naturally to the approval se�ing. Remember that Peters,

Pierczyński and Skowron (2021) proved that MES always returns a budget allocation satisfying

EJR-1. Since additive satisfaction functions can be interpreted as cardinal ballots, one can always

compute an EJR-1[sat ] budget allocations, for an additive satisfaction function sat , by running

MES with the cardinal ballots corresponding to sat . In the approval se�ing, we can go further

and get the same result for EJR up to any project.

Definition 22 (Extended Justified Representation up to Any Project for Approval Ballots). Given

an instance I = 〈P, c, b〉 a profile A of approval ballots, and a satisfaction function sat , a budget

allocation π ∈ Feas(I) is said to satisfy extended justified representation up to any project for

sat (EJR-X[sat ]) if for all P ⊆ P and all P -cohesive groups N , there exists i ∈ N such that for all

p⋆ ∈ P \ π we have sat i(π ∪ {p⋆}) > sat i(P ).

EJR-X is a strengthening of EJR-1 that uses a universal quantifier on the project that bounds the

distance between the justified and the actual satisfaction of an agent, instead of an existential

one.

One of themain results fromBrill, Forster, Lackner,Maly and Peters (2023) is that for a natural

class of satisfaction functions, the outcome of MES[sat] always satisfies EJR-X[sat ].

Definition 23 (DNS Function). We say a satisfaction function sat has weakly decreasing nor-

malised satisfaction (DNS) if for all projects p, p′ ∈ P with c(p) ≤ c(p′), we have:

sat(p) ≤ sat(p′) and
sat(p)

c(p)
≥ sat(p′)

c(p′)
.

In this case, we call sat a DNS function.

DNS functions ensure that more expensive projects are (weakly) be�er than cheaper ones; and

that more expensive projects do not provide more satisfaction per cost than cheaper ones. Cru-

cially, satcost and satcard are DNS functions.

�eorem 24 (Brill, Forster, Lackner, Maly and Peters 2023). Let sat be a DNS function. �en, for

any instance I and profile A of approval ballots, MES[sat ](I,A) satisfies EJR-X[sat ].

Before moving on to PJR for approval ballots, let us touch on another topic. Fairstein, Vi-

lenchik, Meir and Gal (2022) study the consequences of satisfying EJR on measures of social

welfare and representation.6 Specifically, they provide bounds on the social welfare and repre-

sentation guarantees of rules satisfying EJR[satcard ]. In other words, they compare the maxi-

6Fairstein, Vilenchik, Meir and Gal (2022) also perform a similar analysis for specific rules, however, these rules

are not part of the standard set of rules we study in this paper.
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mally achievable social welfare with respect to satcard and satCC to the social welfare achieved

by rules satisfying EJR.7

�eorem25 (Fairstein, Vilenchik, Meir andGal 2022). Let R be a PB rule that satisfies EJR[satcard ].

�en for any instance I = 〈P, c, b〉 and profile A of approval ballots, we have:

cmin

n · b

⌊

b

cmax

⌋

≤

∑

i∈N
satcardi (R(I,A))

max
π∈Feas(I)

∑

i∈N
satcardi (π)

≤ 4√
n
− 1

n
,

where cmin = minp∈P c(p) and cmax = maxp∈P c(p).
Moreover, for any instance I = 〈P, c, b〉 and profile A of approval ballots, we have:

1

n
≤

∑

i∈N
satCC(R(I,A))

max
π∈Feas(I)

∑

i∈N
satCC(π)

≤ 1

n− 1
,

where the upper bound holds if n ≥ b/cmin with cmin defined as above.

5.1.2.3 Proportional Justified Representation for Approval Ballots

Let us now move on to PJR. �ree main sets of authors have adapted PJR in the context of PB

with approval ballots: Aziz, Lee and Talmon (2018), Los, Christoff and Grossi (2022) and Brill,

Forster, Lackner, Maly and Peters (2023).

We first provide the definition of PJR as stated by Brill, Forster, Lackner, Maly and Peters

(2023).

Definition 26 (Proportional Justified Representation for Approval Ballots). Given an instance

I = 〈P, c, b〉 a profile A of approval ballots, and a satisfaction function sat , a budget allocation

π ∈ Feas(I) is said to satisfy proportional justified representation for sat (PJR[sat ]) if for all

P ⊆ P and all P -cohesive groups N , we have:

sat

(

⋃

i∈N
{p ∈ π | Ai(p) = 1}

)

≥ sat(P ).

Similar adaptions of PJR to the PB se�ing have also been studied. PJR[sat cost ] is equivalent to the

BPJR-L property introduced by Aziz, Lee and Talmon (2018).8 Aziz, Lee and Talmon (2018) also

defined variants of (B)PJR based on the relative budget, which will be discussed in Section 5.5.2.

Finally, PJR[sat card ] has been introduced by Los, Christoff and Grossi (2022).

For now, let us focus on PJR[sat ]. It should be clear that for any satisfaction function sat ,

EJR[sat ] implies PJR[sat ]. �us, for any instance I and profile A of approval ballots, there ex-

ists a budget allocation satisfying PJR[sat ], however for a large class of satisfaction function, it

cannot be computed in polynomial time (see �eorem 21 for the exact condition on the satisfac-

tion function). Finally checking that PJR[sat ] is coNP-complete for any sat that is neutral with

respects to projects with the same cost, and that already holds in the unit-cost se�ing.

As we did for EJR, we can then introduce PJR-X.

7Let us also mention that Lackner and Skowron (2020) studied the same questions in the multiwinner voting

se�ing.
8Note that the definition of BPJR-L proposed by Aziz, Lee and Talmon (2018) looksmore involved than PJR[satcost ]

as they do not use the notion of cohesive groups. Close inspection should convince the reader that these two defini-

tions are equivalent.
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Definition 27 (Proportional Justified Representation up to Any Project for Approval Ballots).

Given an instance I = 〈P, c, b〉 a profile A of approval ballots, and a satisfaction function sat , a

budget allocation π ∈ Feas(I) is said to satisfy proportional justified representation up to any

project for sat (PJR-X[sat ]) if for all P ⊆ P and all P -cohesive groups N and any p⋆ ∈ P \ π, we
have:

sat

(

{p⋆} ∪
⋃

i∈N
{p ∈ π | Ai(p) = 1}

)

> sat(P ).

Remember that we know for any DNS function sat (Definition 23), that EJR-X[sat ] can be

satisfied (�eorem 24). Since PJR-X[sat ] is implied by EJR-X[sat ], this result also applies to

PJR-X[sat ]. Brill, Forster, Lackner, Maly and Peters (2023) actually prove something stronger:

PJR-X[sat ] can be satisfied simultaneously for every DNS function sat .

�eorem 28 (Brill, Forster, Lackner, Maly and Peters 2023). Let I be an instance I and A a

profile. �en, SeqPhrag(I,A), MaximinSupp(I,A) and MES[satcard ](I,A) satisfy PJR-X[sat ]

for all DNS functions sat simultaneously.

Interestingly, Brill, Forster, Lackner, Maly and Peters (2023) actually proved that this result holds

for all rules satisfying a certain strengthening of priceability, as we will see later on (in Sec-

tion 5.3).

�is result is rather far reaching given its generality. Note that it generalises the result of Los,

Christoff and Grossi (2022) who prove that SeqPhrag satisfies PJR-1[sat card ]. It also generalises

the result of Aziz, Lee and Talmon (2018) that MaximinSupp satisfies a property called Local-

BPJR-L[satcost ] as explained below.

Finally, note that this result cannot be generalised to EJR-X, as Brill, Forster, Lackner, Maly

and Peters (2023) show that there are instances where EJR-1[satcost ] and EJR-1[satcard ] are in-
compatible.

Before Brill, Forster, Lackner, Maly and Peters (2023) introduced their definition of PJR pa-

rameterised by a satisfacion function, Aziz, Lee and Talmon (2018) defined PJR for PB with ap-

proval ballots. As we have mentioned before, they introduced an axiom called BPJR-L—that is

equivalent to PJR[sat cost ]—and proved that budget allocations satisfying it could not be found

in polynomial time (unless P = NP). Due to this observation, they introduced Local-BPJR-L, a

weakening of PJR[sat cost ]. Let us provide the definition of this axiom. Note that we use here

the definition of Brill, Forster, Lackner, Maly and Peters (2023) who extended it to work with

arbitrary satisfaction functions. �e original definition of Aziz, Lee and Talmon (2018) would

correspond to Local-BPJR-L[satcost ].

Definition 29 (Local Budget Proportional Justified Representation for the Budget Limit). Given

an instance I = 〈P, c, b〉 a profile A of approval ballots, and a satisfaction function sat , a budget

allocation π ∈ Feas(I) is said to satisfy Local-BPJR-L[sat ] if for all P ⊆ P and all P -cohesive

groups N , it is the case that for every P ⋆ ⊆ P such that {p ∈ π | ∃i ∈ N,Ai(p) = 1} ( P ⋆ we

have:

P ⋆ /∈ argmax
P ′⊆{p∈P|∀i∈N,Ai(p)=1}

c(P ′)≤c(P )

sat(P ′).

One of the main result of Aziz, Lee and Talmon (2018) is that MaximinSupp satisfies Local-

BPJR-L[satcost ]. Later on, Brill, Forster, Lackner, Maly and Peters (2023) explored further the

relationship between different properties and proved that any budget allocation satisfying PJR-

X[sat] also satisfies Local-BPJR-L[sat ] (so SeqPhrag, MaximinSupp and MES[satcost ] satisfy

Local-BPJR-L[satcost ]). In addition they showed that in the unit-cost case, Local-BPJR-L does

not coincide with PJR, while PJR-X does.
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It is also worth mentioning that Aziz, Lee and Talmon (2018) also introduced another axiom

called Strong-BPJR-L. It is satisfied by a budget allocation π if for every ℓ ∈ [1, b], and for ev-

ery group of voters N that controls ℓ units of budget, i.e., |N |/n · b ≥ ℓ, and that unanimously

approve projects of total cost more than ℓ, i.e, c({p ∈ P | ∀i ∈ N,Ai(p) = 1}) ≥ ℓ, we have
c
(
⋃

i∈N{p ∈ π | Ai(p) = 1}
)

≥ ℓ. Because of the indivisibility of the projects, this axiom can-

not always be satisfied. Note that this definition implicitly uses the satisfaction function satcost

as the groups of voter claiming ℓ units of budget need to enjoy collectively a cost-satisfaction of

at least ℓ. Because of this limited applicability, we chose not to focus on this notion. Note that

Strong-BPJR-L is a strengthening of PJR[satcost ] (which is equivalent to BPJR-L) as the condition

on the group of agents N is weaker.

5.2 �e Core

Intuitively, EJR guarantees that in every cohesive group there is at least one voter that receives

as much satisfaction as the group could guarantee each member if the group could spend their

part of the budget as they wish. We now introduce a property that is similar in spirit, called the

core, though it does not rely on cohesive groups.

5.2.1 �e Core with Cardinal Ballots

We start by providing the definition of the core. Note that it was first introduce by Fain, Goel

and Munagala (2016) for PB with indivisible projects. �e definition below, though adapted to

the indivisible PB se�ing, is very similar.

Definition 30 (�e Core of PB with Cardinal Ballots). Given an instance I = 〈P, c, b〉 and a

profile A of cardinal ballots, a budget allocation π ∈ Feas(I) is in the core of I if for every group

of voters N ⊆ N and subset of projects P ⊆ P such that |N |/n ≥ c(P )/b, there exists a voter i⋆ ∈ N
with:

∑

p∈π
Ai⋆(p) ≥

∑

p∈P
Ai⋆(p).

�e core can be seen as a kind of stability condition which guarantees that no groups of agents

can “deviate” by taking their part of the budget to fund a set of projects P that gives each agent

in the group a higher satisfaction than π. �e core of PB is inspired by the concept of the core in

cooperative game theory (Fain, Goel and Munagala, 2016), but there is no direct technical link.

Interestingly, EJR can be viewed as a restriction of the core where only cohesive groups are

allowed to deviate. �erefore, the core can be seen as a generalisation of EJR to arbitrary groups

of agents.

It is known that there are instances where no budget allocation is in the core. In this case,

we say that the core of the instance is empty. Peters, Pierczyński and Skowron (2021) present an

instance with cardinal ballots in the unit-cost se�ing for which no feasible budget allocation is in

the core. �ey strengthen a first counter-example provided by Fain, Munagala and Shah (2018)

without the unit-cost assumption.9

Proposition 31 (Peters, Pierczyński and Skowron 2021). �ere exists an instance I with unit costs
and profile A of cardinal ballots such that no budget allocation π ∈ Feas(I) is in the core, even if

for every agent i ∈ N and project p ∈ P we have Ai(p) ∈ {0, 1, 2}.
9�is counterexample is described in the Appendix on endowment-based core of Fain, Munagala and Shah (2018),

available at arxiv.org/abs/1805.03164.
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5.2.2 Approximating the Core with Cardinal Ballots

We now know that the core can be empty. �is raises the question whether it is always possible

to find budget allocations that are close to the core. We will present some recent answers to this

question below.

We start with a multiplicative approximation to the core as defined by Peters, Pierczyński

and Skowron (2021). �is approximates the core by bounding the satisfaction the agents would

enjoy when deviating.

Definition 32 (�e α-sat Approximate Core of PB with Cardinal Ballots). Given an instance

I = 〈P, c, b〉, a profile A of cardinal ballots, and a scalar α ≥ 1, a budget allocation π ∈ Feas(I)
is in the α-sat approximate core of I if for every group of voters N ⊆ N and subset of projects

P ⊆ P such that |N |/n ≥ c(P )/b, there exists a voter i⋆ ∈ N and a project p⋆ ∈ P with:

∑

p∈π∪{p⋆}
Ai⋆(p) ≥

∑

p∈P Ai⋆(p)

α
.

Note that the above is actually an additive and multiplicative approximation of the core as an

extra project is also added. �is follows from the known impossibility of a (simply) multiplicative

approximation of the core (Fain, Munagala and Shah, 2018; Cheng, Jiang, Munagala and Wang,

2020; Munagala, Shen, Wang and Wang, 2022).

Using the above definition of an approximation of the core, Peters, Pierczyński and Skowron

(2021) showed thatMES is never too far from the core.

�eorem 33 (Peters, Pierczyński and Skowron 2021). Given an instance I = 〈P, c, b〉 and a

profile A of cardinal ballots, let umax and umin be the highest and lowest possible satisfaction of a

voter, defined as:

umin = min
i∈N

min
π∈Feas

∃p∈π,Ai(p)>0

∑

p∈π
Ai(p) and umax = max

i∈N
max

π∈Feas(I)

∑

p∈π
Ai(p).

�en, MES(I,A) is in the α-sat approximate core of I for α = 4 log(2 · umax/umin).

�e previous result shows that the O(log(|Feas(I)|))-sat approximate core is always non

empty for any instance I . Moreover, it also implies that a suitable budget allocation can be found

in polynomial-time. Munagala, Shen, Wang and Wang (2022) extend this result by showing that

theO(1)-sat approximate core is always non-empty, however it is unknown if the corresponding

budget allocation can be computed in polynomial-time.

�eorem 34 (Munagala, Shen, Wang and Wang 2022). For every instance I and profile A of

cardinal ballots, the 9.27-sat approximate core is always non-empty.

�is result is obtained by some rather intricate rounding of fractional budget allocations. Note

that it also allows Munagala, Shen, Wang and Wang (2022) to obtain results for non-additive

cardinal ballots. �ese results are out of the scope of this survey.

Let us now delve into a second type of approximation of the core that has been introduced:

entitlement approximation. �e idea here is that deviations of coalitions of voters would not be

possible if we were to scale down their entitlement (which is equal to b/n in the definition of the

core). We provide the definition of Jiang, Munagala and Wang (2020) below.
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Definition 35 (�e α-entitlement approximate core of PB with Cardinal Ballots). Given an in-

stance I = 〈P, c, b〉, a profile A of cardinal ballots, and a scalar α ≥ 1, a budget allocation

π ∈ Feas(I) is in the α-entitlement approximate core of I if for every group of votersN ⊆ N and

subset of projects P ⊆ P such that |N |/n ≥ α · c(P )/b, there exists a voter i⋆ ∈ N with:
∑

p∈π
Ai⋆(p) ≥

∑

p∈P
Ai⋆(p).

By suitable rounding of lo�eries over budget allocation, Jiang, Munagala and Wang (2020)

were able to show that the O(1)-entitlement approximate core is always non-empty.

�eorem 36 (Jiang, Munagala and Wang 2020). For every instance I and profile A of cardinal

ballots, the 32-entitlement approximate core is always non-empty.

Using the above definition of approximate core, Munagala, Shen andWang (2022) studied the

problem of core auditing in PB. �is is the computational problem that seeks, given an instance

I , a profileA of cardinal ballots and a budget allocation π ∈ Feas(I), what is the largest α such

that π is not in the α-entitlement approximate core. For this problem, Munagala, Shen andWang

(2022) prove different hardness results, including hardness of approximation, and also provide a

logarithmic approximation algorithm.

5.2.3 �e Core with Approval Ballots

When we turn to approval ballots, the picture is quite different: We do not know if the core is

always non-empty or not, even for unit-cost instances. �is is actually one of the main open

problems in the literature on multi-winner voting (Lackner and Skowron, 2023).

For the sake of completeness, we provide below the definition of the core with approval

ballots.

Definition 37 (�e Core of PB with Approval Ballots). Given an instance I = 〈P, c, b〉, a profile
A of approval ballots and a satisfaction function sat , a budget allocation π ∈ Feas(I) is in the

core[sat] of I for sat if for every group of voters N ⊆ N and subset of projects P ⊆ P such that
|N |/n ≥ c(P )/b, there exists a voter i⋆ ∈ N with:

sat i⋆(π) ≥ sat i⋆(P ).

�e question of whether we can always find a budget allocation in the core[sat] is open, even

for satcard and satcost .

5.3 Priceability

�e next property on our agenda is priceability. �e idea is that voters have access to a virtual

currency, and, if, by following simple rules, they can use their money to fund a given budget

allocation, then the la�er will be called priceable. All voters receive the same amount of virtual

currency initially. In that sense, priceability is a proportionality requirement as the power to

influence the outcome is shared equally among the voters. It can also be seen as an explainability

requirement: a priceable budget allocation is an outcome that could have been obtained if the

process had been run as a market.

�e initial definition of priceability—in the context of multi-winner voting—is due to Peters

and Skowron (2020). We present below the adaptation of this definition to the context of PB

proposed by Peters, Pierczyński and Skowron (2021) for PB with cardinal ballots.10

10Note that we changed the terminology to avoid using the terms “budget” and “price” that can be confused with

the basic elements of an instance. �is typically avoids sentences such as “π is priceable for a budget B ≥ b”.
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Definition 38 (Priceability for Cardinal Ballots). Given an instance I = 〈P, c, b〉 and a profile

A of cardinal ballots, a budget allocation π satisfies priceability, or is priceable, if there exists an

entitlement α ∈ R≥0 and a collection (γi)i∈N of contribution functions, γi : P → [0, α] such that

all of the following conditions are satisfied.

C1: If γi(p) > 0 then Ai(p) > 0 for all p ∈ P and i ∈ N : Agents only contribute to project they

derive satisfaction from.

C2: If γi(p) > 0 then p ∈ π for all p ∈ P and i ∈ N : Only projects in π receive contribution.

C3:
∑

p∈P γi(p) ≤ α for all i ∈ N : No agent contributes more than their entitlement α.

C4:
∑

i∈N γi(p) = c(p) for all p ∈ π: �e projects in π are receiving sufficient contribution to be

funded.

C5:
∑

i∈N|Ai(p)>0

(

α−∑p∈P γi(p)
)

≤ c(p) for all p ∈ P \π: No group of agents with positive
utility for a project p has more than c(p) money le�.

�e pair 〈α, (γi)i∈N 〉 is called a price system.

Note that it would be more natural to have a strict inequality in (C5), i.e., to guarantee that no

group of agents has enough money le� over to afford a project for which each member of the

group has positive utility. Unfortunately, this would be impossible to satisfy as it is sometimes

necessary to do some tie-breaking between equally popular projects.

Moreover, in the definition of priceabilitywe only distinguish between assigning a zero score

to a project, or a strictly positive score. �erefore, the definition does not change whether car-

dinal or simply approval ballots are used. Note that this definition of priceability requires the

underlying assumption that satisfaction is strictly monotonic.

Priceable Rules. Given the similarities between the definition of priceability and that of MES,

it will not surprise anyone that the la�er always returns priceable budget allocations. Maybe

more surprisingly, it also is the case of sequential Phragmén and the maximin support rules.

Proposition 39 (Peters, Pierczyński and Skowron 2021). For every instance I and profile A of

cardinal ballots, MES(I,A) is priceable.

Proposition 40 (Los, Christoff and Grossi 2022). For every instance I and profile A of approval

ballots, SeqPhrag(I,A) is priceable.

Proposition 41 (Brill, Forster, Lackner, Maly and Peters 2023). For every instance I and profile

A of approval ballots, MaximinSupp(I,A) is priceable.

Priceability and PJR. In the context of multi-winner voting, links have been drawn between

PJR and pricebility (Peters and Skowron, 2020). Brill, Forster, Lackner, Maly and Peters (2023)

extend this result for PBwith approval ballots. �ey show that priceability implies PJR-X[satcost ].
More importantly, they show that a stronger notion of priceability implies PJR-X[sat ] for all DNS
functions sat (see Definition 23).

�eorem 42 (Brill, Forster, Lackner, Maly and Peters 2023). For every instance I = 〈P, c, b〉 and
profile A of approval ballots, consider a budget allocation π ∈ Feas(I) that is priceable for a price
system 〈α, (γi)i∈N 〉 such that α > b and that also satisfies the following extra condition:

C6:
∑

i∈N|Ai(p)>0 γi(p
′) ≤ c(p) for all p ∈ P \π and p′ ∈ π: No group of agents can save money

by jointly moving their contributions to a project that they all support.
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�en, π satisfies PJR-X[sat ] for every DNS function sat .

In particular, Brill, Forster, Lackner, Maly and Peters (2023) show that MES[satcard ], SeqPhrag

and MaximinSupp provide budget allocations that are priceable for their extended notion of

priceability.

5.4 Proportionality in Ordinal PB

Until now, we have focused on cardinal ballots. In the following we consider ordinal ballots and

proportionality requirements for such ballots.

Aziz and Lee (2021) is the main reference here. In their work, they generalise proportionality

concepts formulti-winner votingwith strict ordinal ballots, to the se�ing of PBwithweak ordinal

ballots. �ese concepts are all based on the idea of solid coalitions, the counterpart of cohesive

groups when agents submit ordinal ballots.

Definition 43 (Solid Coalition). Let I = 〈P, c, b〉 be an instance and A = (%i)i∈N a profile of

weak ordinal ballots. Given a subset of projects P ⊆ P , a group of voters N ⊆ P is a P -solid

coalition if for all voter i ∈ N and project p ∈ P , we have p %i p
′ for all p′ ∈ P \ P .

A group of voters N is thus a P -solid coalition if they all prefer the projects in P to the ones

outside of P .

Equipped with solid coalitions, Aziz and Lee (2021) define two incomparable generalisations

of the proportionality for solid coalitions (Dumme�, 1984). Before defining them, we introduce a

new notation. Interpret aweak order% overP as a vector of indifference classes%= (P1, P2, . . .)
such that all projects in Pj are preferred to the ones in Pj+1∪Pj+2∪· · · . �en, let top(%, k), for
k ∈ N be defined as top(%, k) = P1 ∪ · · · ∪ Pj⋆ ∪ Pj⋆+1 where j

⋆ ∈ N≥0 is the largest number

such that |⋃j⋆

j=1 Pj| < k.

Definition 44 (Comparative Proportionality for Solid Coalitions). Given an instance I = 〈P, c, b〉
and profileA = (%i)i∈N of weak ordinal ballots, a budget allocation π ∈ Feas(I) is said to satisfy
comparative proportionality for solid coalitions (CPSC) if for every P ⊆ P , there is no P -solid

coalition N ⊆ N for which there exists P ′ ⊆ P such that:

c ({p ∈ π | ∃i ∈ N such that p ∈ top(%i, |P |)}) < c(P ′) ≤ |N |
n

· b.

Definition 45 (Inclusion Proportionality for Solid Coalitions). Given an instance I = 〈P, c, b〉
and a profile A = (%i)i∈N of weak ordinal ballots, a budget allocation π ∈ Feas(I) is said to

satisfy inclusion proportionality for solid coalitions (IPSC) if for every P ⊆ P , there is no P -solid

coalition N ⊆ N for which there exists p⋆ ∈ P \ {p ∈ π | ∃i ∈ N such that p ∈ top(%i, |P |)}
such that:

c ({p ∈ π | ∃i ∈ N such that p ∈ top(%i, |P |)}) + c(p⋆) ≤ |N |
n

· b.

Aziz and Lee (2021) show that it is not always possible to find budget allocations satisfying

CPSC, but that we can always find in polynomial time budget allocations satisfying IPSC.

�eorem 46 (Aziz and Lee 2021). �ere exist an instance I and a profileA of weak ordinal ballots

such that no π ∈ Feas(I) satisfies CPSC.
For every instance I and a profileA of weak ordinal ballots there exists π ∈ Feas(I) that satisfies

IPSC. Such a budget allocation can be found in polynomial time.

To conclude, note that Peters, Pierczyński and Skowron (2021) introduce a version of MES

working with strict ordinal ballots, that they link to the framework of Aziz and Lee (2021). In

particular, they show that it satisfies PSC, a weakening of the properties we defined above.
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5.5 Other Fairness Requirements

In the following section, we go through other fairness requirements that have been introduced

in the literature. Since these are properties that have receive less a�ention, we will go a bit faster

on them.

5.5.1 Full Justified Representation

�e first axiom we discuss is full justified representation. Peters, Pierczyński and Skowron (2021)

proposed this strengthening of EJR, which is the strongest axiom based on justified represen-

tation that we know can always be satisfied. It strengthens EJR by relaxing the cohesiveness

requirement.

Definition 47 (Full Justified Representation for Cardinal Ballots). Let I = 〈P, c, b〉 be an instance
andA a profile of cardinal ballots. A group of votersN ⊆ N is weakly (β, P )-cohesive for a scalar
β ∈ R and a subset of projects P ⊆ P if |N |/n · b ≥ c(P ) and

∑

p∈P Ai(p) ≥ β for every i ∈ N .

Given I and A, a budget allocation π ∈ Feas(I) satisfies full justified representation (FJR) if

for all P ⊆ P , all β ∈ R and all weakly (β, P )-cohesive group N , there exists i ∈ N such that:

∑

p∈π
Ai(p) ≥ β.

Using a greedy cohesive rule, Peters, Pierczyński and Skowron (2021) have been able to show

that we can always find a budget allocation satisfying FJR. �is rule is however rather artificial.

It is an open problem whether there is a polynomial time rule that satisfies FJR.

Proposition 48 (Peters, Pierczyński and Skowron 2021). For any instance I and profile A of

cardinal ballots, there exists a budget allocation π ∈ Feas(I) that satisfies FJR.

Interestingly, this applies even for cardinal ballots over budget allocations, as long as they are

monotone.

FJR can be adapted to the world of PB with approval ballots. �e definition is provided below.

Definition 49 (Full Justified Representation for Approval Ballots). Let I = 〈P, c, b〉 be an in-

stance, A a profile of approval ballots and sat a satisfaction function. A budget allocation π ∈
Feas(I) satisfies full justified representation for sat (FJR[sat]) if for every groups of votersN ⊆ N
and subset of project P ⊆ P such that |N |/n · b ≥ c(P ), there exists i ∈ N for whom:

sat i(π) ≥ sat i(P ).

Because Peters, Pierczyński and Skowron (2021) prove that FJR can be satisfied even for

monotonic cardinal ballots over budget allocations, FJR[sat ] can be satisfied for all sat .

5.5.2 Variants with Relative Budget

Most of the proportionality requirements we introduce heavily rely on the budget limit b. �is is

particularly true for the axioms based on justified representation. Aziz, Lee and Talmon (2018)

suggest to work on properties that are independent of the budget limit and only defined in terms

of the cost of the budget allocation under consideration.

�ey revisit their adaptions of PJR for PB by changing the notion of cohesive group, making

it dependent on the cost c(π) of the budget allocation π under consideration instead of b. All of
these new concepts are weaker than the standard ones. �ey also are all satisfiable, simply by

using π = ∅ (note that because of how we organised the elements in our definition for cohesive

groups—definitions 8 and 16—this does not lead to any division by 0).
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5.5.3 Laminar Proportionality

�e next property we want to mention is laminar proportionality. It is a proportionality re-

quirement that only applies to specific instances, the laminar ones. �ese instances are very

well-structured in a way that makes it obvious which outcomes are proportional. Laminar pro-

portionality requires the outcome to be proportional with respect to this structure.

�is property was defined for PB by Los, Christoff and Grossi (2022). �ey show that rules

that are laminar proportional in the multi-winner se�ing (namelyMES and SeqPhrag) cease to

be on PB instances.

5.5.4 Proportionality for Solid Coalitions

In section 5.4 we have defined two axioms for proportionality with weak ordinal ballots. Ap-

proval ballots can be seen as a special case of weak ordinal ballots where all ballots have at most

two indifference classes. Following this observation, Aziz and Lee (2021) provide definitions of

IPSC and CPSC for approval ballots. We give these definitions below. Observe that they are both

closely related to PJR.

Definition 50 (CPSC with Approval Ballots). Given an instance I = 〈P, c, b〉 and a profile A

of approval ballots, a budget allocation π ∈ Feas(I) is said to satisfy CPSC if the following two

conditions hold:

◮ π satisfies PJR[satcost ];

◮ π is of maximal cost: π ∈ argmaxπ′∈Feas(I)(π
′).

Definition 51 (IPSC with Approval Ballots). Given an instance I = 〈P, c, b〉 and a profile A

of approval ballots, a budget allocation π ∈ Feas(I) is said to satisfy IPSC if the following two

conditions hold:

◮ for all sets of voters N ⊆ N such that c(
⋃

i∈N{p ∈ π | Ai(p) = 1}) < |N |/n · b and for all

p ∈ ⋂i∈N{p ∈ P \ π | Ai(p) = 1} we have:

c(p) + c

(

⋃

i∈N
{p ∈ π | Ai(p) = 1}

)

> |N |/n · b,

◮ π is exhaustive.

�e first bullet point of the above definition closely resembles PJR-X[satcost ]. One can actually

prove that IPSC implies PJR-X[sat cost ]. Indeed, if a budget allocation π fails PJR-X[satcost ], then

the P -cohesive N witnessing this violation would also be a witness of the violation the first

bullet point of the definition of IPSC.

It should be quite clear from the definition that CPSC is still not satisfiable with approval

ballots. IPSC is, since it already was with generic weak ordinal ballots.

5.5.5 Proportionality with Cumulative Ballots

Among the different types of cardinal ballots we defined, there is one for which we still have not

discussed proportionality requirements: cumulative ballots. Now is the time to do so. �e only

study on cumulative ballots has been conducted by Skowron, Slinko, Szufa and Talmon (2020).

Among others, they study proportional representation axioms for this se�ing. We present here

what they call proportional representation.
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Definition 52 (Proportional Representation with Cumulative Ballots). Given an instance I =
〈P, c, b〉 and a profile A of cumulative ballots, a budget allocation π ∈ Feas(I) is said to satisfy

proportional representation if for every ℓ ∈ {1, . . . , b}, every group of agents N ⊆ N with |N |/n ·
b ≥ ℓ and every subset of projects P ⊆ P with c(P ) ≤ ℓ, it holds that if for all i ∈ N and p ∈ P ,

we have Ai(p) > 0, and for all i ∈ N \N and p ∈ P \ P , then we must have P ⊆ π.

Skowron, Slinko, Szufa and Talmon (2020) also introduce a weaker and a stronger variant of

the above. �ey prove that all of them are satisfiable.

5.5.6 Equality of Resources

In the context of PB with approval ballots, one needs to go through the concept of satisfaction

functions to define proportionality requirements. Based on the observation that no satisfaction

function can ever be satisfactory, Maly, Rey, Endriss and Lackner (2023) suggest to define fairness

criteria not in terms of satisfaction but in terms of the resources spent on an agent, the so called

equality of resources. �ey use the concept of share (Lackner, Maly and Rey, 2021) to measure the

amount of resources spent on an agent and aim at providing every agents with their fair share.

Definition 53 (Fair Share). Given an instance I = 〈P, c, b〉 and a profile A of approval, π ∈
Feas(I) is said to satisfy fair share if for every agent i ∈ N we have:

∑

p∈π
Ai(p) ·

c(p)

|{i′ ∈ N | Ai′(p) = 1}| ≥ min















b

n
,
∑

p∈P
Ai(p)=1

c(p)

|{i′ ∈ N | Ai′(p) = 1}|















.

�is requirement is not satisfiable in general, which motivated Maly, Rey, Endriss and Lack-

ner (2023) to introduce several weakenings, either based on direct relaxations (“up-to-one project”

or “local” variants), or on cohesive groups. Most notably, they prove that a variant of MES pro-

vides good fair share guarantees both theoretically and empirically.

5.6 Fairness in Extended Settings

We now mention some papers that have studied fairness in PB beyond the standard model. �is

section overlaps in some way with Chapter 8 though we only focus on fairness requirements

here and only discuss the work briefly.

◮ In their study of PB with multiple resources, Motamed, Soeteman, Rey and Endriss (2022)

introduced several proportionality axioms and studied whether they could be satisfied by

some load-balancing mechanisms.

◮ When studying PB with uncertainty on the cost of the projects, Baumeister, Boes and

Laußmann (2022) investigated the link between properties specific to their se�ing and

justified representation axioms such as PJR[satcost ] (or BPJR-L) and EJR.

◮ Lackner, Maly and Rey (2021) introduce a fairness theory for long-term PB where several

instances are considered. �ey introduce several fairness concepts for their se�ing and

study under which conditions they can be satisfied.

◮ In a model in which the budget is endogenous, Aziz and Ganguly (2021) studied versions

of the core and of a simple proportionality axiom, investigating which welfare-maximising

rule satisfy them.

39



Core

FJR

Strong-EJR

EJR

EJR-1

PJR

PJR-1

Laminar

Proportionality

Priceability

Laminar Instances

�ese concepts cannot always be satisfied.

�ese concepts can always be satisfied, however finding a suitable budget allocation cannot

be done in polynomial time unless P = NP.

�ese concepts can always be satisfied, and a suitable budget allocation can be found in

polynomial time.

Laminar Proportionality is always satisfiable, the computational complexity of finding a

budget allocation satisfying it is unknown.

Figure 5.1: Taxonomy of the proportionality requirements for PB with cardinal ballots. An arrow
between two concepts means that any budget allocation satisfying one, also satisfies the other.
All missing arrows are known to be missing.

Most of this picture is based on Los, Christoff and Grossi (2022) who showed: the absence of arrow between the either

the core, EJR or PJR and priceability; the link between laminar proportionality and priceability (only for laminar

instances); the absence of arrows between laminar proportionality and either PJR, EJR or the core. �e link between

FJR and EJR is due to Peters, Pierczyński and Skowron (2021). For the satisfiability of the concepts, see Table 5.1.

5.7 Taxonomies of Proportionality in PB

�roughout this chapter we have introduced a significant number of properties related to pro-

portionality in PB. In an a�empt to clarify the relationship between these properties, we draw

several taxonomies. �e taxonomy for cardinal ballots can be found in Figure 5.1. Figure 5.2

presents the taxonomy for approval ballots. All the details are available on the figures. We also

summarise which rule satisfy which axioms, in Table 5.1 for cardinal ballots, and in Table 5.2 for

approval ones.
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Core[sat]

FJR[sat ]

Strong-EJR[sat ]

EJR[sat ]

EJR-X[sat ]

Incr. sat

EJR-1[sat ]

PJR[sat ]

PJR-X[sat ]

Incr. sat

PJR-1[sat ]

PJR-X[sat cost ]

Local-BPJR-L[sat ]

PJR[satcost ]

equiv. BPJR-L

Strong-BPJR-L

IPSC

CPSC
Priceability with

C6 and α > b

DNS sat

Priceability

with α > b

Priceability

�ese concepts cannot always be satisfied.

�ese concepts can always be satisfied, however finding a suitable budget allocation cannot

be done in polynomial time unless P = NP.

�ese concepts can always be satisfied, and a suitable budget allocation can be found in

polynomial time when sat is a DNS function.

�ese concepts can always be satisfied, and a suitable budget allocation can be found in

polynomial time when sat is additive (for the concepts depending on sat ).

It is unknown whether the core can always be satisfied or not.

Incr. sat : the link only applies for satisfaction functions that are strictly increasing, i.e., such that for all P ⊆ P and

P ′ ( P , we have sat(P ′) < sat(P ).
DNS sat : the link only applies for DNS function, see Definition 23.

PJR[satcost ] equiv. BPJR-L: these two concepts are equivalent.

Priceability with α > b: priceable for a price system 〈α, (γi)i∈N 〉 where α > b.
Priceability with C6 and α > b: see �eorem 42.

Figure 5.2: Taxonomy of the proportionality requirements for PB with approval ballots where
sat is an arbitrary satisfaction function. An arrow between two concepts means that any budget
allocation satisfying one, also satisfies the other. Some arrows are only valid for some satisfaction
functions, the conditions are indicate on the arrow. All missing arrows are known to be missing.

�e links between EJR, PJR, Local-BPJR-L and priceability concepts are due to Brill, Forster, Lackner, Maly and Peters

(2023). �e link from Strong-BPJR-L and BPJR-L is due to Aziz, Lee and Talmon (2018). �e link between CPSC and

PJR[satcost ] is due to Aziz and Lee (2021). �e one between IPSC and PJR-X[satcost ] has never been published. �e

absence of arrows between the core, EJR and priceability is due to Los, Christoff and Grossi (2022). �e link between

FJR and EJR is due to Peters, Pierczyński and Skowron (2021). For the satisfiability of the concepts, see Table 5.2.
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Cardinal Ballots

Core None Peters, Pierczyński and Skowron (2021)

FJR Greedy cohesive rule Peters, Pierczyński and Skowron (2021)

Strong-EJR None

EJR Greedy cohesive rule Peters, Pierczyński and Skowron (2021)

EJR-1 MES Peters, Pierczyński and Skowron (2021)

PJR Greedy cohesive rule

PJR-1 MES Los, Christoff and Grossi (2022)

Laminar

Proportionality
? Los, Christoff and Grossi (2022)

Priceability MES Peters, Pierczyński and Skowron (2021)

Table 5.1: Rules satisfying each of the fairness propertywe introduced for generic cardinal ballots
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Approval Ballots

Core[sat] ?

FJR[sat] ◮ for any sat , a greedy cohesive rule [1]

Strong-EJR[sat] ◮ None

EJR[sat]
◮ A greedy cohesive rule for any sat [1]

◮MES[satcard ] for sat = satcard [1]

EJR-X[sat]
◮ for any sat , a greedy cohesive rule [1]

◮ for any DNS function sat , MES[sat ] [2]

EJR-1[sat]
◮ for any sat , a greedy cohesive rule [1]

◮ for any additive sat ,MES[sat ] [1]

PJR[sat] ◮ for any sat , a greedy cohesive rule [1]

PJR-X[sat]

◮ for any sat , a greedy cohesive rule [1]

◮ for any DNS function sat , MES[sat ], SeqPhrag, and

MaximinSupp
[2]

CPSC ◮ None [3]

IPSC ◮�e expanding approval rule [3]

Local-BPJR-L[sat] ◮MES[sat ], SeqPhrag, andMaximinSupp [2, 4]

Strong-BPJR-L ◮ None [4]

Priceability ◮MES[sat ], SeqPhrag, andMaximinSupp [1, 2]

Priceability

with α > b
◮MES[sat ], SeqPhrag, andMaximinSupp [1, 2]

Priceability

with C6 and α > b
◮MES[satcard ], SeqPhrag, and MaximinSupp [2]

[1] Peters, Pierczyński and Skowron (2021)

[2] Brill, Forster, Lackner, Maly and Peters (2023)

[3] Aziz and Lee (2021)

[4] Aziz, Lee and Talmon (2018)

Table 5.2: Rules satisfying each of the fairness property we introduced for approval ballots. sat

is an arbitrary satisfaction function.
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Chapter 6

Axiomatic Analysis

Fairness requirements are the most studied properties in the literature on PB but are not the only

ones. In the following, we review other axioms that have been introduced.

Our analysis will start with a discussion around exhaustiveness (Section 6.1) and a presen-

tation of the monotonicity axioms that have been introduced for PB (Section 6.2). From there,

we will move on to axioms relating to strategic behaviour of the agents (Section 6.3). We will

conclude this section by our usual discussion of the concepts that exist in the literature but which

do not fit in the previous sections (Section 6.4).

6.1 Exhaustiveness

Let us start with exhaustiveness, an efficiency requirement that states that the budget should not

be underused. It is sometimes considered a standard requirement that should be enforced by

default. However, as we will see, it is incompatible with some other axioms, notably priceability.

Note that Talmon and Faliszewski (2019) introduced an axiom called budget monotonicity that

is equivalent to exhaustiveness for resolute rules and very similar to it for irresolute rules; the

name exhaustiveness is due to Aziz, Lee and Talmon (2018).

Let us first introduce the idea of exhaustiveness.

Definition 54 (Exhaustiveness). Given an instance I = 〈P, c, b〉, a feasible budget allocation

π ∈ Feas(I) is said to be exhaustive if there are no project p ∈ P \ π such that c(π ∪ {p}) ≤ b.

Table 6.1 summarizes which of the usual rules satisfy exhaustiveness. �e results for the

welfare maximizing and greedy rules are straightforward. Interestingly, the fact that SeqPhrag,

Exhaustiveness

General Instances Unit-Cost Instances

MaxCard ✓ ✓

GreedCard ✓ ✓

MaxCost ✓ ✓

GreedCost ✓ ✓

SeqPhrag ✗ ✓

MaximinSupp ✗ ✓

MES ✗ ✗

Table 6.1: Satisfaction of exhaustiveness for different rules.
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MaximinSupp and MES fail exhaustiveness is due the fact that they are priceable. Indeed, the

two requirements are incompatible.

Proposition 55 (Peters, Pierczyński and Skowron 2021). �ere exists an instance I = 〈P, c, b〉
and a profile A, such that there is no budget allocation π ∈ Feas(I) which is both priceable and

exhaustive, even though there are feasible budget allocations that are priceable, and others that are

exhaustive.

Since exhaustiveness is sometimes considered to be a must, Peters, Pierczyński and Skowron

(2021) proposed several ways to obtain exhaustive outcomes when using non-exhaustive rules.

◮ Completion via Exhaustive Rule: �is technique consists of completing the original

outcome of the rule by applying another rule, which is exhaustive, on the reduced instance

where the selected projects have been removed and the budget reduced accordingly. Typ-

ically, one could use a greedy selection procedure or an exhaustive variant of SeqPhrag.

◮ Exhaustion by Variation of the Budget Limit: Using this technique, the rule is run

several times for different values of the budget limit until finding an outcome that is feasible

and exhaustive for the initial budget. Typically, the budget limit is increased by one unit

per voter at each iteration and the final outcome is the first exhaustive one that is found,

or the first one for which increasing the budget again would lead to an outcome that is not

feasible for the original budget limit.

Note that this technique does not guarantee that the outcome will be exhaustive (notably

because when used with MES, the outcome would still be priceable). Moreover, this is

not necessarily a “completion technique” since many rules are not limit monotonic (see

Section 6.2), so the final outcome does not need to be a superset of the initial outcome.

◮ Exhaustion by Perturbation of the Ballots: �is final technique modifies the profile

slightly so that the outcome is guaranteed to be exhaustive. Which perturbation mecha-

nism should be used depends on the rule. For instance, for MES with cardinal ballots, it

is know that if every voter reports a strictly positive score for all the projects, then the

outcome of MES is exhaustive. �erefore, one could applyMES on the modified profile in

which all 0 scores have been replaced by an arbitrary small value.

6.2 Monotonicity Requirements

Talmon and Faliszewski (2019) introduced several monotonicity axioms for PB that represent to

this date the largest corpus of axioms that has been proposed (if we disregard proportionality

requirements). All of these axioms regard the behaviour of PB rules in dynamic environments:

when the cost function changes, when the set of projects changes etc. . .Hence, they can also be

interpreted as robustness requirements: they enforce that the outcome does not change much

with small variation of the instance. We will define these axioms in the following and present

what is known about them.

�e first axiom we consider constrains the behaviour of the rule when the cost function

changes.

Definition 56 (Discount monotonicity). A PB rule R is said to be discount-monotonic if, for any

two PB instances I = 〈P, c, b〉 and I ′ = 〈P, c′, b〉 such that for some distinguished project p⋆ ∈ P ,

we have c(p⋆) > c′(p⋆), and c(p) = c′(p) for all p ∈ P \ {p⋆}, it is the case that p⋆ ∈ R(I,A)
implies p⋆ ∈ R(I ′,A) for all profiles A.
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�us, a rule is discount monotonic if whenever the price of a selected project p decreases, the

rule would still project p.

�e second axiom, inspired by commi�ee monotonicity in the multi-winner voting litera-

ture (Lackner and Skowron, 2023), investigates the behaviour of the rule when the budget limit

changes.

Definition 57 (Limit monotonicity). A PB rule R is said to be limit-monotonic if, for any two PB

instances I = 〈P, c, b〉 and I ′ = 〈P, c, b′〉 with b < b′ and c(p) ≤ b for all projects p ∈ P , it is the

case that R(I,A) ⊆ R(I ′,A) for all profiles A.

�us, a rule is limit monotonic if it selects a superset of the original set of selected projects when

the budget limit increases.

�e next two axioms concern cases where the project set changes, with some projects being

either merged or split. Note that these axioms have only been considered for approval ballots.

Since generalising them to arbitrary cardinal ballots is not straightforward, we focus on approval

profiles here.

Given a PB instance I = 〈P, c, b〉 and a profileA of approval ballots, we say that the instance

I ′ = 〈P ′, c′, b〉 and the profileA′ of approval ballots are the result of spli�ing project p⋆ ∈ P into

P ⋆ ⊆ P ′ (with P ⋆ ∩ P = ∅, i.e., P ⋆ is a set of new projects), if the following conditions are

satisfied:

◮ �e project p⋆ is replaced by P ⋆ in the set of projects: P ′ = (P \ {p⋆}) ∪ P ⋆;

◮ �e total cost of P ⋆ is that of p⋆, i.e., c′(P ⋆) = c(p⋆); and for all p ∈ P ⋆, it is the case that

c′(p) > 0;

◮ �e cost of every other project is as in I : c′(p) = c(p) for all projects p ∈ P ′ \ P ⋆;

◮ �e project p⋆ is replaced by P ⋆ in the approval ballots containing it: for every i ∈ N with

Ai(p
⋆) = 0, we have A′

i = Ai, and for every i ∈ N with Ai(p
⋆) = 1, we have A′

i(p) = 1
for all p ∈ P ⋆, and A′

i(p) = Ai(p) for all p ∈ P ′ \ P ⋆.

We also say that I andA are the result of merging P ⋆ into p⋆ given I ′ and A
′.

Definition 58 (Spli�ing monotonicity). A PB rule R is said to be spli�ing-monotonic if, for any

two PB instances I = 〈P, c, b〉 and I ′ = 〈P ′, c′, b〉 with corresponding profiles of approval ballots

A and A′ and any project p ∈ R(I,A) such that I ′ and A′ are the result of spli�ing project p into
a subset of projects P given I andA, it is the case that R(I ′,A′) ∩ P 6= ∅.

Definition 59 (Merging monotonicity). A PB rule R is said to be merging-monotonic if, for any

two PB instances I = 〈P, c, b〉 and I ′ = 〈P ′, c′, b〉 with corresponding profiles of approval ballots‘

A and A
′, and any subset of projects P ⊆ R(I,A) such that I ′ and A

′ are the result of merging

project set P into project p given I and A, it is the case that p ∈ R(I ′,A′).

�ese two axioms thus impose the rule to also apply the spli�ing and merging operations on

its outcome. Note that for spli�ing monotonicity, a stronger version of it would require all the

smaller projects to be selected (instead of only one).

We present in Table 6.2 what is known about the standard PB rules regarding those axioms.

�e relevant references are provided there. Observe that it is not known which monotonicity

axioms are satisfied by SeqPhrag, MaximinSupp andMES. One exception is that we know that

MES cannot satisfy limit monotonicity, as it does not satisfy commi�ee monotonicity, the equiv-

alent of limit monotonicity for unit-cost instances (Lackner and Skowron, 2023).
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Monotonicity

Limit Discount Spli�ing Merging

MaxCard ✗ ✓ ✓ ✗

GreedCard ✗ ✓ ✓ ✗

MaxCost ✗ ✗ ✓ ✓

GreedCost ✗ ✗ ✗ ✓

MES ✗

Table 6.2: Summary of the results concerning the monotonicity axioms for rules used with
approval ballots.

�e results for MaxCard, GreedCard, MaxCost and GreedCost are due to Talmon and Faliszewski (2019). Note

that their proofs contained several mistakes, corrected in part by Baumeister, Boes and Seeger (2020). Specifically, the

proof that GreedCard fails merging monotonicity is wrong, but the results still holds (though it is solely based on

the use of tie-breaking rules that apply differently before and a�er merging projects). MES fails limit montonicity as

it already did on unit-cost instances (Lackner and Skowron, 2023).

�e definitions we provided above concern resolute PB rules, that is, rules that always output

a single budget allocation. �ey have been extended to irresolute rules—that can return more

than one budget allocation—in two different ways general ways. For a given irresolute rule R:

◮ Baumeister, Boes and Seeger (2020) (and subsequently Sreedurga, Bhardwaj and Narahari,

2022) extend the monotonicity axioms in an existential fashion: for a given instance I and

profileA, and for every budget allocation π ∈ R(I,A) that satisfy a specific pre-condition,
it must be the case that for every suitable I ′ and A

′, there exist a budget allocation π′ ∈
R(I ′,A′) satisfying the specific post-condition;

◮ Rey, Endriss and de Haan (2020) extend them in a universal fashion: for a given instance

I and profileA if every budget allocation π ∈ R(I,A) satisfies a specific pre-condition, it
must be the case that for every suitable I ′ and A

′ and every π′ ∈ R(I ′,A′), the required
post-condition is satisfied.

6.3 Strategy-Proofness

�e next class of requirements we consider is that of incentive compatibility axioms. �ese

axioms are concerned with preventing agents from engaging in strategic behaviour.

Let us first discuss the concept of strategy-proofness. Intuitively speaking, it states that no

agent should be able to obtain a be�er outcome by reporting a ballot that is different from their

true preferences. To define it, we thus need a way of comparing outcomes from the point of view

of the agents. When using cardinal ballots, we will assume that the ballot represents the utility

of the agents for the projects. For approval ballots, we will use the notion of satisfaction function

as the measure of utility.1

Definition 60 (Strategy-Proofness for Cardinal Ballots). A PB rule R is said to be strategy-proof

if for every instance I and profile A of cardinal ballots, and for every agent i ∈ N , there exists no

cardinal ballot A′
i such that for the profile A′ = (A1, . . ., Ai−1, A

′
i, Ai+1, . . ., An) we have:

∑

p∈R(I,A′)

Ai(p) >
∑

p∈R(I,A)

Ai(p).

1Note here that we are indeed discussing utilities and not satisfaction levels since we are considering behaviours

that the agents engage into themselves, according to their private information.
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Observe that the satisfaction of the manipulating agent i with the output under the new profile A′

is computed with regards to the initial ballot Ai.

Definition 61 (Strategy-Proofness for Approval Ballots). Given a satisfaction function sat , a

PB rule R is said to be strategy-proof for sat if for every instance I and profile A of approval

ballots, for every agent i ∈ N , there exists no approval ballot A′
i such that for the profile A′ =

(A1, . . . , Ai−1, A
′
i, Ai+1, . . . , An) we have:

sat(R(I,A′) ∩Ai) > sat(R(I,A) ∩Ai).

It is already known from multi-winner voting, i.e., when instances have unit costs, that

strategy-proofness is incompatiblewith veryweak notions of proportionality (Peters, 2018, 2019).

�is result obviously also applies to general PB instances.

�eorem 62 (Peters 2018). A PB rule R is said to be weakly-proportional on unit-cost instances

if for every unit-cost instance I and profile A of cardinal ballots such that for all voters i, i′ ∈ N
either {p ∈ P | Ai(p) > 0} = {p ∈ P | Ai′(p) > 0}, or these two sets do not intersect (A is

a party-list profile), then for any project p ∈ P such that |{i ∈ N | Ai(p) > 0}| ≥ n/b we have
p ∈ R(I,A).

�ere is no rule that satisfies simultaneously weak-proportionality on unit-cost instances and

strategy-proofness.

Note the actual statement of Peters (2018, 2019), an additional efficiency requirement is needed.

�is is because in the multi-winner voting se�ing, one has to ensure that a rule selects the re-

quired number of candidates (i.e. the rule has to be exhaustive). Since this constraint is li�ed in

the PB se�ing, there is no need for such additional axiom.

It should also be noted that the proportionality axiom defined in the above statement is par-

ticularly weak and is known to be implied by all kinds of other requirements (Peters, 2018),

including all the ones introduced in Section 5.1. In particular, this implies that rules such as

SeqPhrag, MaximinSupp orMES are not strategy-proof.

�is result has been replicated in the multi-resource PB case, for suitable adaptations of the

axioms (Motamed, Soeteman, Rey and Endriss, 2022). Moreover, it also applies to irresolute rules

(Kluiving, de Vries, Vrijbergen, Boixel and Endriss, 2020).

It is known that with unit-cost instances, welfare maximising rules such as GreedCost

(which is equivalent to MaxCost on unit-cost instances) are strategy-proof. When moving to

general PB instances, we can show that GreedCost is only approximately strategy-proof. We

provide below the definition of Goel, Krishnaswamy, Sakshuwong and Aitamurto (2019) that

weakens strategy-proofness in a “up-to-one” fashion.

Definition 63 (Approximate Strategy-Proofness for Approval Ballots). Given a satisfaction func-

tion sat , a PB rule R is said to be approximately strategy-proof for sat if for every instance I and

profileA of approval ballots, for every agent i ∈ N , there exists no approval ballot A′
i such that for

the profile A′ = (A1, . . . , Ai−1, A
′
i, Ai+1, . . . , An), for all p ∈ P we have:

sat(R(I,A′) ∩Ai) > sat((R(I,A) ∩Ai) ∪ {p}).

Proposition 64 (Goel, Krishnaswamy, Sakshuwong and Aitamurto 2019). �e GreedCost is

approximately strategy-proof for satcost .
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Note that the result by Goel, Krishnaswamy, Sakshuwong and Aitamurto (2019) uses knapsack

ballots. �is is not required when projects are indivisible.2 It is also worth noting that this result

does not hold for satcard .

Interestingly, exact welfare maximising rules such as MaxCard or MaxCost fail even ap-

proximate strategy-proofness on PB instances, for large sets of satisfaction functions. �is can

come as a surprise since they are strategy-proof on unit-cost instances. Note that this also holds

if ballot are knapsack ballots.

Example 65. Consider the instance I = 〈P, c, b〉 with P = {p1, . . . p5}, the cost are such that

c(p1) = 6, c(p2) = 3 and c(p3) = c(p4) = c(p5) = 3, and the budget limit is b = 6.
Assume that three agents are involved in the process for whom the truthful ballots are to approve

of p1 for agent 1; p2 for agent 2; and p3, p4 and p5 for agent 3. If ties are broken lexicographically,

the outcome of both MaxCard and MaxCost would then be π = {p1}. Note that agent 3 has

satisfaction 0 for π. Now, if agent 3 were to approve of p2, p3, p4 and p5 instead, the outcome would

be π′ = {p2, p3, p4, p5}. Is it clear that for any satisfaction function that is strictly monotonic3 and

for every project p ∈ P , agent 3 prefers π′ over π ∪ {p}.

6.4 Other Axioms

Let us conclude by mentioning some other axioms and axiomatic directions that have been fol-

lowed in the context of PB.

In their study onmaximin PBwith approval ballots, Sreedurga, Bhardwaj andNarahari (2022)

adapt several axioms from the multi-winner literature to the context of PB with irresolute rules.

�ese axioms are the narrow-top criterion (an adaptation of unanimity) and clone-proofness (the

outcome of a rule remains the same if projects are cloned). �ey also introduce a new axiom

calledmaximal coverage stating that no redundant project should ever be selected unless it is not

possible to cover more voters, where a voter is covered if at least one of their approved projects

have been selected, and a project is redundant if removing it does not change the set of covered

voters. Note that this axiom can be seen as a fairness requirement.

Following a more typical social choice route, Ceron, Gonzalez and Navarro-Ramos (2022)

initiated the axiomatic characterisation of PB rules, focusing on GreedCost for now.

Finally, it is also worth mentioning that Goel, Krishnaswamy, Sakshuwong and Aitamurto

(2019) provided the first analysis of PB rules in terms of epistemic criteria (being a maximum

likelihood estimator) to date, another branch of the axiomatic approach (Elkind and Slinko, 2016;

Pivato, 2019).

2Let us sketch the proof, originally devised by Ulle Endriss. For any given I = 〈P , c, b〉, consider I ′ = 〈P ′, c′, b〉,
where projects in P have been split into sets of subprojects, each of cost 1. I ′ is thus a unit-cost instance. We can

transform any given profileA of approval ballots in the same manner to obtain a profileA′ of approval ballots. Now,

it is clear that the approval scores of the projects in A
′ are equal to those of the projects in P they come from in

A. Assume that the tie-breaking rule is extended in a consistent way from projects in P to projects in P ′. �en

we know that there exists at most one project p ∈ P such that GreedCost(I ′,A′) contains a proper subset of its

corresponding subprojects. Let π′ ⊆ P be the budget allocation that includes any project in P for which at least one

corresponding subproject is in GreedCost(I ′,A′). We thus have GreedCost(I,A) ∪ {p} = π′. Since GreedCost

is strategy-proof over unit-cost instances (Peters, 2018), no agent can reach a be�er budget allocation than π′ by

strategising, when considering the satisfaction function sat
cost .

3A satisfaction function sat is strictly monotonic if for all P ⊆ P and P ′ ( P , we have sat(P ′) < sat(P ).

49



Chapter 7

Algorithmic Approach

Another large part of the literature focuses on the algorithmic aspects of PB. �is usually con-

cerns computing the outcome of PB rules and the exact complexity of welfare maximisation

under different models.

We will discuss these different aspects, focusing first on outcome determination (Section 7.1),

then on the complexity of welfaremaximisation (Section 7.2), and finally on the other algorithmic

problems that have been studied (Section 7.3).

7.1 Outcome Determination of Standard PB Rules

�e main focus of the computational perspective on social choice is to assess the computational

complexity of computing “good” outcomes. With all that has been presented so far, we already

know a lot about the quality of the outcome of the standard PB rules. �e last step is thus to

assess how hard it is to compute said outcomes.

Formally speaking, this is the problem of computing the outcome of a given rule, the so-

called outcome determination problem. We present below one version of this problem for a given

resolute PB rule R.

OutcomeDetermintion(R)

Input: An instance I = 〈P, c, b〉, a profileA, and a project p ∈ P .

�estion: Is p ∈ R(I,A)?

Note that this definition only makes sense for resolute PB rules. Other formulations are also

possible, for example as a function problem.

�e complexity of the winner determination problem for irresolute PB rules has not been

considered in the literature yet and it is not immediately clear how the outcome determination

problem should be formulate. One natural idea would be to define the problem as checking

whether a project is always selected, or whether it is sometimes selected.

It should be more or less clear that the outcome determination problem can be efficiently

solved for most of the rules that we have focused on, at least in the resolute case. �e actual

definition of GreedCard, GreedCost and SeqPhrag should make it somewhat obvious that

computing their outcome can be done efficiently. ForMaximinSupp, Aziz, Lee and Talmon (2018)

presents a linear program allowing to compute efficiently an optimum load distribution at each

round. Finally, Peters, Pierczyński and Skowron (2021) discuss how to efficiently compute out-

comes of MES.
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�e only rules whose outcomes cannot be computed efficiently are the ones that relate to

exact welfare maximisation. Indeed, maximising the social welfare is usually hard, as we shall

see next.

7.2 Maximising Social Welfare

Let us now turn to the computational problem of maximising measures of social welfare.

First, we introduce the different notions of social welfare that have been studied in the liter-

ature. Note that throughout this section, we will work with cardinal ballots. We also repeat the

definition of Util-SW so that the reader does not need to get back to Section 4.1.

◮ Utilitarian Social Welfare: Given an instance I and a profile A of cardinal ballots, the

utilitarian social welfare achieved by a budget allocation π is defined as:

Util-SW(I,A, π) =
∑

i∈N

∑

p∈π
Ai(p).

�is is the most standard definition of social welfare simply considering the sum of the

satisfactions of the individuals. A budget allocationmaximisingUtil-SW selects the items

that are individually best, i.e., it ignores any interactions between the projects.

◮ Chamberlin-Courant Social Welfare: Given an instance I and a profile A of cardinal

ballots, the Chamberlin-Courant social welfare achieved by a budget allocation π is defined

as:

CC-SW(I,A, π) =
∑

i∈N
max
p∈π

Ai(p).

�e Chamberlin-Courant social welfare assumes that agents only consider one projects

from each budget allocation, the one that leads to the highest satisfaction. Maximising

CC-SW corresponds thus to aim for a budget allocation that represents as many voters as

possible.

Note that CC-SW has been studied by Laruelle (2021) under the name Rawlsian social wel-

fare.

◮ Egalitarian Social Welfare: Given an instance I and a profile A of cardinal ballots, the

egalitarian social welfare achieved by a budget allocation π is defined as:

Egal-SW(I,A, π) = min
i∈N

∑

p∈π
Ai(p).

�e egalitarian social welfare assumes that the welfare of a society is the satisfaction of its

most dissatisfied member. Maximising Egal-SW hence means maximising the satisfaction

of the worst off voter.

Egal-SW is studied by Sreedurga, Bhardwaj and Narahari (2022) under the namemaximin

PB.

◮ Nash Social Welfare: Given an instance I and a profile A of cardinal ballots, the Nash

social welfare achieved by a budget allocation π is defined as:

Nash-SW(I,A, π) =
∏

i∈N

∑

p∈π
Ai(p).
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�e Nash social welfare measures can be seen as a compromise between utilitarian and

egalitarian social welfare. By maximising Nash-SW, one aims to find a fair budget alloca-

tion (Fluschnik, Skowron, Triphaus and Wilker, 2019).

Note that maximising Nash-SW is equivalent to maximising the sum of the logarithms of

the satisfactions of the agents.

�e typical computational problem is then to determine whether there is a budget allocation

that provides at least a certain amount of satisfaction according to a specific measures of welfare.

Fluschnik, Skowron, Triphaus and Wilker (2019) studied this problem for Util-SW, Nash-SW

and CC-SW. Sreedurga, Bhardwaj and Narahari (2022) considered the case of Egal-SW, in the

context of approval ballots with satcost . Talmon and Faliszewski (2019) focused onUtil-SWwith

approval ballots and several satisfaction functions. We summarise the main findings in Table 7.1.

Welfare maximisation problems have also been studied for many of the variations of the

standard model that have been introduced. We just mention them here and refer the reader to

Chapter 8 for more details. Hershkowitz, Kahng, Peters and Procaccia (2021) studied welfare

maximisation in a model in which projects are grouped into district. Similarly, Jain, Sornat,

Talmon and Zehavi (2021) and Patel, Khan and Louis (2021) investigated different social welfare

maximisation when projects are grouped in categories. Jain, Sornat and Talmon (2020) looked

into social welfare for non-additive satisfaction functions. Social welfare has been studied in

multi-resources PB (Motamed, Soeteman, Rey and Endriss, 2022), when the cost is dependent on

the number of users of the projects (Lu and Boutilier, 2011), and when the budget is endogenous

(Aziz and Ganguly, 2021; Aziz, Gujar, Padala, Suzuki and Vollen, 2022; Chen, Lackner and Maly,

2022).

7.3 Other Algorithmic Problems

Participatory budgeting offers other avenues for studies focusing on the computational complex-

ity of related problems.

For instance, Baumeister, Boes and Hillebrand (2021) study the computational complexity of

control in PB instanceswith approval ballots. Control problems are problems of the form “Can the

decision maker achieve certain objectives by changing certain parameters of the instance”. More

specifically, Baumeister, Boes and Hillebrand (2021) studied two types of control forGreedCard,

GreedCost, MaxCard and MaxCost when the decision maker can decide on the price of a

projects, or on the budget limit. Under constructive control, the decision maker aims at forcing

the selection of a given project, while under destructive control, they aim at preventing a given

project from being selected.
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Util-SW

Weakly NP-complete ◮ Even with one voter

Pseudopoly. solvable

Poly. solvable ◮With approval ballots and satcard

Nash-SW

Strongly NP-complete

◮ Even with one voter

◮ Even with two voters and unit-cost instances

◮ Even with unit-cost instances andAi(p) ∈ {0, 1}
for all i ∈ N and p ∈ P

W[1]-hard

◮ Parameterised by the budget limit b, even with

unit-cost instances andAi(p) ∈ {0, 1} for all i ∈ N
and p ∈ P
◮ Parameterised by the budget limit b and the num-

ber of voters n, even with unit-cost instances and

unary encoding

◮ Even with single-peaked or single crossing pro-

files

XP ◮ Parameterised by the number of voters n

FPT
◮ Parameterised by the number of voters n and

maxi∈N |{∑p∈π Ai(p) | π ∈ Feas(I)}|

CC-SW

Pseudopoly. solvable ◮ For single-peaked and single-crossing profiles

Strongly NP-complete
◮ Even for binary valuations, i.e., ballots with only

two different values, and unit-cost instances

FPT
◮ Parameterised by the number of voters and
∑

i∈N
∑

p∈P Ai(p)

W[2]-hard ◮ Parameterised by the budget limit b

Egal-SW

Strongly NP-complete ◮ Even ifAi(p) ∈ {0, c(p)} for all i ∈ N and p ∈ P

Pseudopoly. solvable
◮When Ai(p) ∈ {0, c(p)} for all i ∈ N and p ∈ P
and the number of distinct ballots is constant

Poly. solvable

◮ When Ai(p) ∈ {0, c(p)} for all i ∈ N and p ∈
P , the number of distinct ballots is constant, and

maxp∈P c(p)
GCD{c(p)|p∈P} is constant.

Table 7.1: Computational complexity of the decision problem corresponding to themaximisation
of different types of social welfare. For a givenmeasure of welfare SW, the exact decision problem
that is considered is the following: given an instance I = 〈P, c, b〉, a profileA of cardinal ballots,
and x ∈ Q≥0, is there a budget allocation π ∈ Feas(I) such that SW(I,A, π) ≥ x?

Statements for Util-SW follow immediately from the literature on the knapsack problem (Kellerer, Pferschy and

Pisinger, 2004) as explained by Talmon and Faliszewski (2019). �e results for Nash-SW and CC-SW are due to

Fluschnik, Skowron, Triphaus andWilker (2019). CC-SWwith approval ballotswas studied by Talmon and Faliszewski

(2019). Sreedurga, Bhardwaj and Narahari (2022) studied Egal-SW.

Note that Ai(p) ∈ {0, 1} for all i ∈ N and p ∈ P simulates approval ballots with the satisfaction function sat
card ,

and Ai(p) ∈ {0, c(p)} for all i ∈ N and p ∈ P simulates approval ballots used with sat
cost .
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Chapter 8

Variations and Extensions of the

Standard Model

�e literature we reviewed so far studied what could be called the standard model of PB. Beyond

that, a myriad of variations of the model have been introduced. In the following we delve into

these variations, in an order based on their (assumed) end-goal. We will first look into variations

of the standard model that aim at capturing real-life PB processes more accurately (Section 8.1).

Our focus will then shi� to models that propose extensions of the standard model (Section 8.2).

8.1 Towards More Accurate Models of PB

A large chunk of the variations of the standard model have been introduced with the aim of

be�er capturing real-life PB processes. Among others, the repetitive aspect of PB, its multistage

implementation, and its geographical constraints have been studied.

8.1.1 End-to-End Model for PB

We start with the integration of the several stages of a PB process in the analysis. As detailed

in the introduction already, a typical PB process has several stages including two during which

the citizens are consulted: for the exploration of the projects to consider, and for the vote on

which of the selected proposals should actually be implemented. �is two stage model has been

formalised and studied by Rey, Endriss and de Haan (2021). �ey focus on two specific aspects:

shortlisting rules, and strategic behaviours in this integrated model.

Rey, Endriss and de Haan (2021) approach the first stage of the process—the shortlisting

stage, during which agents submit proposals for projects that could be considered throughout

the process—as a multi-winner election for which there is no specific requirements regarding

the size, or cost, of the outcome. �ey define and analyse several shortlisting rules that could be

used to create the shortlist based on different ideas: diversity in the voters represented, diversity

in the essence of the proposals, and limited size of the shortlist to reduce the cognitive burden

induced by the voting stage.

In addition to the first stage, Rey, Endriss and de Haan (2021) also study their end-to-end

model in its entirety. �ey focus on its strategic aspects. �ey try to answer questions of the

type: can an agent improve their satisfaction with the final outcome by not proposing a project

in the first stage? �eir findings indicate that, unsurprisingly, it is difficult to prevent strategic

behaviours.
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8.1.2 Local Versus Global Processes

Real-life PB processes tend to be implemented at the scale of a municipality. It is very common

for the municipality to actually implement several local PB processes, one for each district for

instance, instead of one general process. �is is the case in Amsterdam (City of Amsterdam, 2022)

for instance, and to some extent in Paris (City of Paris, 2020)1. Motivated by this observation

Hershkowitz, Kahng, Peters and Procaccia (2021) investigate the effect of the local versus global

implementation of PB processes.

In their study, Hershkowitz, Kahng, Peters and Procaccia (2021) introduce a model of district-

based PB. Each project belongs to a specific district and contributes a fixed additive amount to the

welfare of its district. In addition, there is a budget limit for each district. A budget allocation is

called district fair if it provides each district at least as much social welfare as they could achieve

with their share of the budget limit. �e authors then consider the problem of selecting a global

budget allocation that is district fair.

Hershkowitz, Kahng, Peters and Procaccia (2021) show that it is computationally hard to

maximise social welfare under district fairness constraints. In addition, they show that one can,

in polynomial time, find probabilistic outcomes that maximises the global social welfare while

being almost district-fair in expectation. Finally, they show that by slightly overspending (by a

factor 1.647 + ǫ, with ǫ > 0), one can find in polynomial time budget allocations that maximise

the global social welfare while providing “district-fairness up to one project” to each district.

8.1.3 Temporal Aspects of PB

PB processes are rarely single-shot instances, they o�en span several years, one PB process being

organised each year. Based on that insight, Lackner, Maly and Rey (2021) introduced a model for

long-term PB based on the perpetual voting framework (Lackner, 2020).

In their work, Lackner, Maly and Rey (2021) introduce what they call a fairness theory for

long-term PB.�ey assume that agents are partitioned into types and they try to achieve fairness

for the types over time. �ey study three fairness requirements based on satcost , relsat and share :

Enforcing that all types enjoy the same welfare, that all types converge towards equal welfare if

the instance would be infinite or that the welfare across types is distributed optimally (according

to the Gini-coefficient). Each of these fairness concepts are analysed in terms of whether they are

satisfiable or not. �eir findings suggest that it is difficult to provide such fairness guarantees.

8.2 Enriching the Standard Model

�e works we have presented above aimed at capturing real-life PB processes more accurately.

In the following, we will review works that aim at enriching the standard model by proposing

extension of the model that could improve the PB process, but are, to the best of our knowledge,

currently not widely implemented in practice.

8.2.1 Additional Distributional Constraints

We first focus on a strand of the literature that deals with incorporating additional constraints to

the standard model. �ese constraints are usually distributional ones that affect which projects

can be selected. �ey canmodel the fact that some projects are incompatible, or that some projects

have positive interactions for instance. We will see several examples in the following.

1In Paris, the PB process combines local and global aspects: voters can vote on the projects for their district

together with some Paris-wide projects.
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Developing a very general framework for this task, Rey, Endriss and de Haan (2020) demon-

strate how to encode PB problems into judgment aggregation, a very expressive framework for

constrained aggregation (Endriss, 2016). �eir framework allows for the addition of any addi-

tional constraint that can be expressed in propositional logic. �ey study the computational cost

of such an approach, and show that as long as the constraints can be efficiently encoded in some

compact logical representations, the computational overhead is not too large. �ey also provide

an axiomatic analysis (following Talmon and Faliszewski, 2019) of some rules that can be used

in this context.

A similar general approach was also considered by Fain, Munagala and Shah (2018) though in

a context more general than PB. �ey provide a framework of public decision making with ma-

troid, matching, and packing constraints, allowing for great flexibility on what can be modelled.

Note that packing constraints correspond to what we call budget constraint.

In addition to this, several papers focus on specific constraints that can be implemented in

PB.

◮ Dependency constraints: Rey, Endriss and de Haan (2020) study how to include depen-

dency constraints in their framework described above. By dependencies, they mean that

the implementation of some projects is dependent on the status of some others.

◮ Categorical constraints. �ese constraints model the idea that projects are grouped into

categories and that additional constraints apply as to which of the projects can be selected

within each category.

Still within their framework, Rey, Endriss and de Haan (2020) introduce quota constraints

that enforce some lower and upper quota to be satisfied for each category. �ey provide

two example of such quotas: on the number of selected projects from a category, or on the

total cost.

Jain, Sornat, Talmon and Zehavi (2021) also study what Rey, Endriss and de Haan (2020)

called cost quota constraint, and what they refer to as PB with project groups. �ey focus

on the computational aspects of finding a feasible budget allocation maximising the social

welfare, and they provide an in-depth analysis of this extended PB se�ing: Parameterized

complexity analysis, and approximability and inapproximability results. In particular, they

provide efficient algorithms to maximise or to approximate the social welfare when the

number of categories is small; while proving hardness for arbitrary number of categories.

Patel, Khan and Louis (2021) investigate the computational complexity of selecting group

fair knapsacks. �is problem is equivalent to selecting a budget allocationsmaximising the

utilitarian social welfare in PB instances with categories over the projects, and upper and

lower quotas on the categories. �e quotas are expressed either in terms of number of se-

lected projects per category, or contribution to the social welfare per category. �ey prove

hardness results, and provide intricate dynamic programming algorithms that compute

approximate solutions.

�otas on the number of project selected per category have also been considered by Chen,

Lackner and Maly (2022) in a model with endogenous funding.

Note that both Rey, Endriss and de Haan (2020) and Chen, Lackner and Maly (2022) do not

assume categories to be disjoint while Jain, Sornat, Talmon and Zehavi (2021) and Patel,

Khan and Louis (2021) do.

Let us finally mention that when studying PB with multidimensional costs, Motamed, Soete-

man, Rey and Endriss (2022) show how to encode distributional constraints simply by using extra
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resources. �ey discuss dependency constraints, categorical constraints (upper quota on the cost

of a category), and incompatibility constraints (categorical constraints with quotas on the upper

number of projects selected in a category).

8.2.2 Interaction Between Projects

An assumption that is almost always made is that projects are independent. We have seen above

how to incorporate distributional constraint challenging that assumption at the level of which

budget allocations are admissible or not. In a similar spirit, Jain, Sornat and Talmon (2020) chal-

lenge the independence assumption from the perspective of the voters, assuming that the satis-

faction of the voters is not additive, i.e., can be more, or less, than the sum of its parts.

Specifically, Jain, Sornat and Talmon (2020) assume that there is an interaction structure par-

titioning the projects into categories. �e utility of the voters is defined as the sum of their

satisfaction for each category, the la�er being an increasing, but potentially non-linear, function

of the number of approved and selected projects from within the category. �is model enables

the study of substitution or complementarity effects between the projects from the perspective

of the voters.

In addition to their conceptual contribution, Jain, Sornat and Talmon (2020) present a com-

putational analysis of welfare maximising problems in this se�ing. �ey provide a mixture of

hardness results and (fixed parameter) efficient algorithms. �ey also identify restrictions of the

ballots submi�ed by the voters, defined with respect to a specific interaction structure, for which

the computational problems become tractable.

Note that in the work of Jain, Sornat and Talmon (2020), the interaction structure is given

and fixed for all voters. In subsequent work, Jain, Talmon and Bulteau (2021) analysed how to

obtain such an interaction structure based on several partitions of the projects submi�ed by the

agents. �e focus is computational there as well.

8.2.3 Enriched Cost Functions

Another typical assumption that is made is to assume that the cost of the projects is fixed and

expressed in only one dimension. Both of these aspects of the cost function have been challenged

by different authors.

In one of the first papers on a model not yet called participatory budgeting, Lu and Boutilier

(2011) consider the problem of selecting multiple costly alternatives under a given budget con-

straint. �eir model is slightly different from the standard one for PB as they aim at modeling

recommendation systems. In particular, selected alternatives are assigned to some agents. What

is more interesting for us here is that they assume that the cost of a project is composed of a fixed

part and of a variable part. Specifically, the cost of a project is an affine function of the number

of agents assigned to that project.

�e assumption that costs are unidimensional has also been li�ed. In their framework devel-

oped to include additional constraints in PB (see above), Rey, Endriss and de Haan (2020) assume

that the costs are expressed over several dimensions. More interestingly, Motamed, Soeteman,

Rey and Endriss (2022) focus on analysing the effect of multidimensional costs. �ey extend the

standard model for PB, assuming that the costs of the projects are expressed in terms of several

resources. In this se�ing, they define and study proportionality requirements, incentive compat-

ibility axioms, and their interactions. �ey also touch on the computational aspect of maximising

the social welfare in this se�ing.
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8.2.4 Uncertainty in PB

In practice there is a lot of uncertainty around the actual implementation of the projects. It is

for instance rarely possible to assess the cost of the projects exactly, let alone their completion

time. Baumeister, Boes and Laußmann (2022) initiated the study of PB under uncertainty about

the projects.

In their model, Baumeister, Boes and Laußmann (2022) assume that the costs of the projects

are uncertain. For each project, its cost is described as a probability distribution over a specific

interval. Projects are associated with a completion time and the actual cost of a project is re-

vealed only once the project has been completed. �ey consider online mechanisms that select

the projects to be funded in a dynamic fashion. Within this framework, they provide a series

of impossibility results showing that no online mechanism can be at the same time punctual

(finishes within the given time bound), not too risky (the probability of exceeding the budget is

never too high, or the excess is never too high), and exhaustive (the budget is not underused).

�ey also adapt the justified representation axioms to this se�ing, showing that an adaptation of

MES provide some fairness guarantees here.

8.2.5 PB with Endogenous Funding

�e standard PB model assumes that the budget is provided by the organising entity (a munic-

ipality for instance). Several authors have proposed different models in which the voters can

actually contribute their own funds to help implement some projects.

In a model in which voters submit cardinal ballots over the projects, Chen, Lackner and Maly

(2022) introduce the idea that voters can also submit monetary contribution to specific projects,

thus reducing the amount of public money needed to select the projects. �ey investigate suit-

able aggregation methods for this framework. �e risk with donation is that some voters could

have too much influence on the final outcome. �erefore, they focus on devising rules for which

the satisfaction of no voter decreases when taking into account donations, compared to the case

where the donations are ignored. �ey provide several such rules, and study their merits re-

garding some donation-specific monotonicity requirements. �ey conclude their analysis by

studying the computational complexity of winner determination problems, and the problem of

finding optimal donation policy for the voters.

Moving further away from PB, Aziz and Ganguly (2021) propose a se�ing in which there is

no exogenous fund, instead, each agent joins the process with a given personal budget that will

be used to fund the projects. Agents submit approval ballots and a rule in this se�ing determines,

given an approval profile and the personal budget of the agents, a set of projects to be funded

and the monetary contribution of each individual to the selected projects. �is model is slightly

different from PB in the sense that it is not about the allocation of public funds. It is nevertheless

a framework studying aggregation problems when selecting costly alternatives. �ey introduce

and study several axioms dealing with efficiency (Pareto-optimality), and fairness (core and pro-

portionality). Finally, they investigate several welfare maximisation rules—based on utilitarian,

egalitarian, or Nash social welfare—in terms of these axioms.

Aziz, Gujar, Padala, Suzuki and Vollen (2022) study the same model except that agents submit

cardinal ballots instead of approval ones. �ey focus on the computational aspects of maximising

the utilitarian social welfare subject to some participation requirements (that guarantees the

agents not to contribute more than they receive), showing both computational hardness and

inapproximability of the problem.

58



8.2.6 Weighted PB

�e fact that projects have different costs in PB can be interpreted as them having different

weight. In their study about PB with ordinal ballots, Aziz and Lee (2021) make a symmetrical

assumption that the voters have different weights. �eir analysis does not really focus on this

assumption however, and li�le is known about what its impact is in general.
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Chapter 9

Beyond the Social Choice Take on

Participatory Budgeting

�e focus of this survey, as its title suggests, is the (computational) social choice literature on

PB. Nevertheless, some related topics are worth presenting. First, we briefly discuss some frame-

works from the social choice literature that are related to PB (Section 9.1), and then we take a

more general look at PB and how it is implemented in practice (Section 9.2).

9.1 Related Frameworks and Fields

In this section, we present several frameworks that relate to PB in some ways. We do not provide

much details about them but give pointers for the interested reader.

9.1.1 Multi-Winner Voting

�e most obvious related framework, as we have mentioned several times already, is multi-

winner voting. It is a special case of PB—where instances have unit costs and the budget al-

location is required to be exhaustive—and has been extensively studied for many years, way

before PB became a topic of interest. A recent book by Lackner and Skowron (2023) presents a

large part of that literature for approval ballots and provides many relevant references. A good

starting point for multi-winner voting beyond approval ballots is the chapter by Faliszewski,

Skowron, Slinko and Talmon (2017). Other relevant pointers have already been included in the

different sections above.

9.1.2 Collective Optimisation Problems

As we have seen already PB can be seen as a collective variant of the knapsack problem (see

e.g., Fluschnik, Skowron, Triphaus and Wilker, 2019). �e idea of looking at collective variants

of optimisation problems is a growing field in which PB fits nicely (Boes, Colley, Grandi, Lang

and Novaro, 2021). Other optimisation problems for which their collective variants have been

studied include finding spanning trees or scheduling jobs on machines (Darmann, Klamler and

Pferschy, 2009, 2011; Pascual, Rzadca and Skowron, 2018).

9.1.3 Divisible Participatory Budgeting

�roughout this paper, we only focused on the case of indivisible PBwhere the projects are either

fully funded or not at all. Relaxing this assumption by allowing projects to receive any amount
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of funding leads to the world of divisible PB. �is framework has sometimes been called portion-

ing where a given public resource has to be shared among different divisible projects. Its study

dates back to Bogomolnaia, Moulin and Stong (2005) and has since then received substantial

a�ention. Perspectives that have been considered includes welfare maximisation (Goel, Krish-

naswamy, Sakshuwong and Aitamurto, 2019; Michorzewski, Peters and Skowron, 2020), fairness

guarantees (Fain, Goel and Munagala, 2016; Caragiannis, Christodoulou and Protopapas, 2022;

Airiau, Aziz, Caragiannis, Kruger, Lang and Peters, 2023), strategic behaviours (Aziz, Bogomol-

naia and Moulin, 2019; Freeman, Pennock, Peters and Vaughan, 2021). �is se�ing is also closely

related to that of probabilistic social choice (Brandt, 2018).

9.1.4 Fair Allocation

PB also relates to the literature on fair allocation (Rothe, 2015; Brandt, Conitzer, Endriss, Lang and

Procaccia, 2016) and more specifically on the fair allocation of public goods (Conitzer, Freeman

and Shah, 2017) where the allocated items can impact several agents (they are not privately

owned as is assumed in the typical fair division literature). �is framework can be seen as an

unconstrained version of PB as there needs not be a budget constraint. Note that some work

consider the same model but with constraints on the outcome, though not necessarily budget

constraints (Fain, Munagala and Shah, 2018).

9.2 PB in Practice

So far we have taken a very theoretical look at PB. However, theoretical analysis should be

grounded in some observable facts. In this section we provide pointers to real-life PB processes

for the interested researcher.

For a more empirical analysis of PB, we can look to political scientists. �e seminal paper

on the topic is probably that of Cabannes (2004) who describes the first PB processes in Brazil.

Subsequently, Sintomer, Herzberg and Röcke (2008) analysed how PB was adapted from Brazil

to Europe; Wampler (2012) analysed the core principles of PB; and several books have been pub-

lished, presenting the relevant literature and the recent developments regarding PB (Shah, 2007;

De Oliveira, 2017; De Vries, Nemec and Špaček, 2021; Wampler and Goldfrank, 2022). Finally,

several books giving an overview over the different forms of PB processes around the world

have been published in recent years, such as the books from Dias (2018), Dias, Enrı́quez and Júlio

(2019) or Wampler, McNulty and Touchton (2021).

A lot of papers we have gone through also contain experimental studies they performed.

Ge�ing access to data about real-life PB processes is of critical importance here. �ankfully, the

website PaBuLib.org (Stolicki, Szufa and Talmon, 2020) provides a lot of such data.

Finally, Dominik Peters compiled a list1 of PB instances that includes many interesting pa-

rameters for the social choice scientist: number of votes and projects, budget limit, ballot format,

etc… Let us provide some interesting facts from that list below. Plenty more are to be found out

by going through the list.

◮ Sometimes the budget is increased a�er the vote to afford more projects, sometimes by up

to 250% (Montreal 2021, Toulouse 2019, Gdynia 2021, Cambridge 2015-2021).

◮ Sometimes participation is incentivised by giving a bonus to districts with high turnout or

to individual voters (Rome 2019, Gdynia 2016-2018, Kraków 2019).

1In case the clickable link does not work: wikipedia.org/wiki/List of participatory budgeting votes.
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◮ Sometimes there is a minimum requirement for projects to be selected, for instance, a

project has to receive at least 200 ‘points” to be selected (Gdańsk 2021).

◮ Sometimes unused funds are transferred to the next year (Gdańsk 2014, 2018).

◮ Sometimes projects are partially funded by individual donors (Gdynia 2021).
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Chapter 10

Conclusion

We have now presented almost the entire research that has been conducted by social choice

scientist on the topic of PB. �is line of research is still quite young and there are many things

that can be explored further. We conclude this survey by presenting several directions we believe

are worth exploring for PB.

◮ Investigating more expressive ballots. As we have seen, PB with approval ballots is

the most studied framework for PB. It seems to us that these ballots are unfortunately not

expressive enough for a framework in which alternatives have different cost. In particular,

it is problematic that the meaning of not approving a project is unclear. One ballot format

that has not received much a�ention but that we find appealing is the cumulative ballot

format. It would also be interesting to initiate a study of PB processes where “negative”

opinions can be submi�ed (with explicit disapproval for instance).

◮ Extending the literature on fairness. Even though the literature on fairness in PB is

already quite extensive, there are still several interesting directions to pursue.

⊲ Knowing whether the core of PB with approval ballots is always non-empty or not

is an obvious open problem. Note that this is even open for unit-cost instances.

⊲ Among the proportionality axioms that we know can always be satisfied, FJR is one

of the strongest. However, we don’t know any natural rule that satisfies it. Devising

such a rule, therefore, is an important open problem.

⊲ �e existing analysis of the price of fairness in PB (Fairstein, Vilenchik, Meir and Gal,

2022) is still at a preliminary stage and there is a lot of room for improvement.

⊲ Linking to our first point, when considering approval ballots, it is particularly inter-

esting to find results that apply to whole classes of satisfaction functions rather than

a single one. �is would mitigate the criticism that no satisfaction function on its

own is fully convincing.

⊲ It is known that cohesive groups for large sets of projects do not really occur in

real-life instances, finding strong requirements that would not involve the concept of

cohesive groups would thus be more useful in practice.

◮ Deepening the axiomatic analysis. �e corpus of axioms that have been introduced in

the literature about PB is still rather slim. We believe that there is a crucial need to develop

that side of the literature to have other means to compare rules than fairness guarantees.

Investigating how to adapt the characterisation results from the multi-winner voting lit-

erature (Skowron, Faliszewski and Slinko, 2019; Lackner and Skowron, 2021) could be an

interesting starting point (though potentially rather technical).
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◮ Devising a theory of explainable PB. Taking the risk to be called trend-followers, we

believe that there is room for explaining outcomes of voting procedures to the citizen. PB

makes no exception here. �e outcome of PB rules could be explained in a counterfactual

fashion: “Howmuch cheaper should the project have been to be selected? Howmanymore

supporters?…” A theory of explainable PB could also take the form of more principled,

axiomatically-guided, approaches (see, e.g., Procaccia, 2019; Boixel and Endriss, 2020).

◮ Developing a Python library. Several papers presents simulation results using similar

approaches, rules, etc, meaning that a large set of authors must have somewhere on their

laptop the exact same code. Some of this code is available, see e.g., Pabutools. It would

be nice to gather that in a unified Python package (inspired by the abcvoting package

Lackner, Regner, Krenn, Cela, Kompauer, Lackner, Szufa and Forster, 2021; Lackner, Reg-

ner and Krenn, 2023). �at would make the results based on simulations more reliable

as they would be less susceptible to having errors in the code. It would also help with

reproducibility of said results. Finally, it would be a great tool for the adoption of newly

developed PB rules: verified and approved code would be available.

◮ Looking beyond the voting stage. As we mentioned in the introduction, PB is usually

a longer process that has several steps. Despite this, the social choice literature on PB

has almost exclusively focused on the voting stage, with the end-to-end model of Rey,

Endriss and de Haan (2021) being the only exception. We believe that there are many

interesting questions which can be answered with social choice methods that arise from a

more holistic view of the PB process. �is includes, for example, which incentives voters

have when planning a project that they want to propose, i.e., is it beneficial to make a

project as cheap as possible or to merge two similar projects.

◮ Stepping outside the Western world. It is worth pointing out that the (computational)

social choice literature so far has almost exclusively used PB processes in the Western

world as examples. However, there is a large diversity in the actual implementation of PB

around the world. For example in Western countries, generally only a small percentage

of a municipalities budget is allocated to PB and most projects funded through PB are

small “quality of life” improvements that are not essential to the functioning of the city. In

contrast, for example in early implementations of PB in Brazil, significant parts of the cities

budget was spend through PB and many projects funded through PB addressed crucial

parts of life like access to basic health care (Cabannes, 2004). For a systematic analysis of

the differences between PB processes in different parts of the world, we refer to the book

by Wampler, McNulty and Touchton (2021). Taking a more global perspective on PB could

open interesting new research directions.
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Pablo Basanta Val, and Piotr Skowron. 2017. Proportional justified representation. In Proceed-

ings of the 31st AAAI Conference on Artificial Intelligence (AAAI). 670–676. (Cited on page 27)

Luis Sánchez-Fernández, Norberto Fernández-Garcı́a, Jesús A Fisteus, and Markus Brill. 2022.
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